These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 17289022)
1. Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Shiota M; Heike T; Haruyama M; Baba S; Tsuchiya A; Fujino H; Kobayashi H; Kato T; Umeda K; Yoshimoto M; Nakahata T Exp Cell Res; 2007 Mar; 313(5):1008-23. PubMed ID: 17289022 [TBL] [Abstract][Full Text] [Related]
2. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Martin-Rendon E; Sweeney D; Lu F; Girdlestone J; Navarrete C; Watt SM Vox Sang; 2008 Aug; 95(2):137-48. PubMed ID: 18557828 [TBL] [Abstract][Full Text] [Related]
3. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. Chen XD; Dusevich V; Feng JQ; Manolagas SC; Jilka RL J Bone Miner Res; 2007 Dec; 22(12):1943-56. PubMed ID: 17680726 [TBL] [Abstract][Full Text] [Related]
4. Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation. Lee JH; Kosinski PA; Kemp DM Exp Cell Res; 2005 Jul; 307(1):174-82. PubMed ID: 15922737 [TBL] [Abstract][Full Text] [Related]
5. Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Polisetti N; Chaitanya VG; Babu PP; Vemuganti GK Neurol India; 2010; 58(2):201-8. PubMed ID: 20508336 [TBL] [Abstract][Full Text] [Related]
6. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions. Alexanian AR Exp Cell Res; 2005 Nov; 310(2):383-91. PubMed ID: 16168985 [TBL] [Abstract][Full Text] [Related]
7. Endogenous bone-marrow-derived stem cells contribute only a small proportion of regenerated myocardium in the acute infarction model. Fukuhara S; Tomita S; Nakatani T; Yutani C; Kitamura S J Heart Lung Transplant; 2005 Jan; 24(1):67-72. PubMed ID: 15653382 [TBL] [Abstract][Full Text] [Related]
8. Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation. Kohno R; Ikeda Y; Yonemitsu Y; Hisatomi T; Yamaguchi M; Miyazaki M; Takeshita H; Ishibashi T; Sueishi K Brain Res; 2006 Jun; 1093(1):54-70. PubMed ID: 16697356 [TBL] [Abstract][Full Text] [Related]
9. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Wislet-Gendebien S; Hans G; Leprince P; Rigo JM; Moonen G; Rogister B Stem Cells; 2005 Mar; 23(3):392-402. PubMed ID: 15749934 [TBL] [Abstract][Full Text] [Related]
10. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Ishikawa T; Akatsuka A Stem Cells; 2007 Sep; 25(9):2283-90. PubMed ID: 17588936 [TBL] [Abstract][Full Text] [Related]
11. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Tropel P; Platet N; Platel JC; Noël D; Albrieux M; Benabid AL; Berger F Stem Cells; 2006 Dec; 24(12):2868-76. PubMed ID: 16902198 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. Ma K; Laco F; Ramakrishna S; Liao S; Chan CK Biomaterials; 2009 Jul; 30(19):3251-8. PubMed ID: 19285341 [TBL] [Abstract][Full Text] [Related]
13. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. Li X; Yu X; Lin Q; Deng C; Shan Z; Yang M; Lin S J Mol Cell Cardiol; 2007 Feb; 42(2):295-303. PubMed ID: 16919679 [TBL] [Abstract][Full Text] [Related]
14. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. Phinney DG; Kopen G; Isaacson RL; Prockop DJ J Cell Biochem; 1999 Mar; 72(4):570-85. PubMed ID: 10022616 [TBL] [Abstract][Full Text] [Related]
15. Isolation and enrichment of skeletal muscle progenitor cells from mouse bone marrow. Bhagavati S; Xu W Biochem Biophys Res Commun; 2004 May; 318(1):119-24. PubMed ID: 15110761 [TBL] [Abstract][Full Text] [Related]
16. Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Hermann A; List C; Habisch HJ; Vukicevic V; Ehrhart-Bornstein M; Brenner R; Bernstein P; Fickert S; Storch A Cytotherapy; 2010; 12(1):17-30. PubMed ID: 19878082 [TBL] [Abstract][Full Text] [Related]
17. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Arsic N; Mamaeva D; Lamb NJ; Fernandez A Exp Cell Res; 2008 Apr; 314(6):1266-80. PubMed ID: 18282570 [TBL] [Abstract][Full Text] [Related]
18. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Rose RA; Jiang H; Wang X; Helke S; Tsoporis JN; Gong N; Keating SC; Parker TG; Backx PH; Keating A Stem Cells; 2008 Nov; 26(11):2884-92. PubMed ID: 18687994 [TBL] [Abstract][Full Text] [Related]
19. Potential conversion of adult clavicle-derived chondrocytes into neural lineage cells in vitro. Li HY; Zhou XF J Cell Physiol; 2008 Mar; 214(3):630-44. PubMed ID: 17786944 [TBL] [Abstract][Full Text] [Related]
20. Trafficking and differentiation of mesenchymal stem cells. Liu ZJ; Zhuge Y; Velazquez OC J Cell Biochem; 2009 Apr; 106(6):984-91. PubMed ID: 19229871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]