These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17289028)

  • 1. Analysis of acidic surface of Haloferax mediterranei glucose dehydrogenase by site-directed mutagenesis.
    Esclapez J; Pire C; Bautista V; Martínez-Espinosa RM; Ferrer J; Bonete MJ
    FEBS Lett; 2007 Mar; 581(5):837-42. PubMed ID: 17289028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family.
    Pire C; Esclapez J; Ferrer J; Bonete MJ
    FEMS Microbiol Lett; 2001 Jun; 200(2):221-7. PubMed ID: 11425479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity from Haloferax mediterranei, sequence analysis and heterologous overexpression.
    Domenech J; Ferrer J
    Biochim Biophys Acta; 2006 Nov; 1760(11):1667-74. PubMed ID: 17049749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei.
    Díaz S; Pérez-Pomares F; Pire C; Ferrer J; Bonete MJ
    Extremophiles; 2006 Apr; 10(2):105-15. PubMed ID: 16200391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond.
    Sakai G; Kojima K; Mori K; Oonishi Y; Sode K
    Biotechnol Lett; 2015 May; 37(5):1091-9. PubMed ID: 25650345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization and preliminary X-ray analysis of binary and ternary complexes of Haloferax mediterranei glucose dehydrogenase.
    Esclapez J; Britton KL; Baker PJ; Fisher M; Pire C; Ferrer J; Bonete MJ; Rice DW
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):743-6. PubMed ID: 16511145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the low-temperature activity of Sulfolobus tokodaii glucose-1-dehydrogenase mutants.
    Sugii T; Akanuma S; Yagi S; Yagyu K; Shimoda Y; Yamagishi A
    J Biosci Bioeng; 2014 Oct; 118(4):367-71. PubMed ID: 24742629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Analysis of Lysine Acetylation in the Halophilic Archaeon Haloferax mediterranei.
    Liu J; Wang Q; Jiang X; Yang H; Zhao D; Han J; Luo Y; Xiang H
    J Proteome Res; 2017 Sep; 16(9):3229-3241. PubMed ID: 28762273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface.
    Ding H; Gao F; Liu D; Li Z; Xu X; Wu M; Zhao Y
    Enzyme Microb Technol; 2013 Dec; 53(6-7):365-72. PubMed ID: 24315638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280.
    Easley KE; Sommer BJ; Boanca G; Barycki JJ; Simpson MA
    Biochemistry; 2007 Jan; 46(2):369-78. PubMed ID: 17209547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Hydroxyacid dehydrogenase from Haloferax mediterranei, a D-isomer-specific member of the 2-hydroxyacid dehydrogenase family.
    Bonete MJ; Ferrer J; Pire C; Penades M; Ruiz JL
    Biochimie; 2000 Dec; 82(12):1143-50. PubMed ID: 11120357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii.
    Jolley KA; Russell RJ; Hough DW; Danson MJ
    Eur J Biochem; 1997 Sep; 248(2):362-8. PubMed ID: 9346289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer.
    Han J; Zhang F; Hou J; Liu X; Li M; Liu H; Cai L; Zhang B; Chen Y; Zhou J; Hu S; Xiang H
    J Bacteriol; 2012 Aug; 194(16):4463-4. PubMed ID: 22843593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei.
    Britton KL; Baker PJ; Fisher M; Ruzheinikov S; Gilmour DJ; Bonete MJ; Ferrer J; Pire C; Esclapez J; Rice DW
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4846-51. PubMed ID: 16551747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction.
    Zhang L; Chooback L; Cook PF
    Biochemistry; 1999 Aug; 38(35):11231-8. PubMed ID: 10471272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and Computational Insights on a Novel Acid-Resistant and Thermal-Stable Glucose 1-Dehydrogenase.
    Ding H; Gao F; Yu Y; Chen B
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28587256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-NirK from Haloferax mediterranei as an example of metalloprotein maturation and exportation via Tat system.
    Esclapez J; Zafrilla B; Martínez-Espinosa RM; Bonete MJ
    Biochim Biophys Acta; 2013 Jun; 1834(6):1003-9. PubMed ID: 23499847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Su KL; Ho PT; Hung HC
    Arch Biochem Biophys; 2009 Jul; 487(1):19-27. PubMed ID: 19464998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.