These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17289170)
1. Neurotensin receptor binding and neurotensin-induced growth signaling in prostate cancer PC3 cells are sensitive to metabolic stress. Carraway RE; Hassan S Regul Pept; 2007 Jun; 141(1-3):140-53. PubMed ID: 17289170 [TBL] [Abstract][Full Text] [Related]
2. Ca2+ channel blockers enhance neurotensin (NT) binding and inhibit NT-induced inositol phosphate formation in prostate cancer PC3 cells. Carraway RE; Gui X; Cochrane DE J Pharmacol Exp Ther; 2003 Nov; 307(2):640-50. PubMed ID: 14570823 [TBL] [Abstract][Full Text] [Related]
3. Regulation of neurotensin receptor function by the arachidonic acid-lipoxygenase pathway in prostate cancer PC3 cells. Carraway RE; Hassan S; Cochrane DE Prostaglandins Leukot Essent Fatty Acids; 2006 Feb; 74(2):93-107. PubMed ID: 16406549 [TBL] [Abstract][Full Text] [Related]
4. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Xiang X; Saha AK; Wen R; Ruderman NB; Luo Z Biochem Biophys Res Commun; 2004 Aug; 321(1):161-7. PubMed ID: 15358229 [TBL] [Abstract][Full Text] [Related]
5. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Baumann P; Mandl-Weber S; Emmerich B; Straka C; Schmidmaier R Exp Cell Res; 2007 Oct; 313(16):3592-603. PubMed ID: 17669398 [TBL] [Abstract][Full Text] [Related]
6. Protein kinase C inhibitors alter neurotensin receptor binding and function in prostate cancer PC3 cells. Carraway RE; Hassan S; Dobner PR Regul Pept; 2008 Apr; 147(1-3):96-109. PubMed ID: 18313772 [TBL] [Abstract][Full Text] [Related]
7. Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. Li HL; Yin R; Chen D; Liu D; Wang D; Yang Q; Dong YG J Cell Biochem; 2007 Apr; 100(5):1086-99. PubMed ID: 17266062 [TBL] [Abstract][Full Text] [Related]
8. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase. Du M; Shen QW; Zhu MJ; Ford SP J Anim Sci; 2007 Apr; 85(4):919-27. PubMed ID: 17178807 [TBL] [Abstract][Full Text] [Related]
9. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Kim YM; Hwang JT; Kwak DW; Lee YK; Park OJ Ann N Y Acad Sci; 2007 Jan; 1095():496-503. PubMed ID: 17404062 [TBL] [Abstract][Full Text] [Related]
10. Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells. Hwang JT; Kim YM; Surh YJ; Baik HW; Lee SK; Ha J; Park OJ Cancer Res; 2006 Oct; 66(20):10057-63. PubMed ID: 17047069 [TBL] [Abstract][Full Text] [Related]
11. 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside stimulates tyrosine hydroxylase activity and catecholamine secretion by activation of AMP-activated protein kinase in PC12 cells. Fukuda T; Ishii K; Nanmoku T; Isobe K; Kawakami Y; Takekoshi K J Neuroendocrinol; 2007 Aug; 19(8):621-31. PubMed ID: 17620104 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. Kuo CL; Ho FM; Chang MY; Prakash E; Lin WW J Cell Biochem; 2008 Feb; 103(3):931-40. PubMed ID: 17615555 [TBL] [Abstract][Full Text] [Related]
13. Activation of AMP kinase alpha1 subunit induces aortic vasorelaxation in mice. Goirand F; Solar M; Athea Y; Viollet B; Mateo P; Fortin D; Leclerc J; Hoerter J; Ventura-Clapier R; Garnier A J Physiol; 2007 Jun; 581(Pt 3):1163-71. PubMed ID: 17446219 [TBL] [Abstract][Full Text] [Related]
14. Activation of AMP-activated protein kinase stimulates proopiomelanocortin gene transcription in AtT20 corticotroph cells. Iwasaki Y; Nishiyama M; Taguchi T; Kambayashi M; Asai M; Yoshida M; Nigawara T; Hashimoto K Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1899-905. PubMed ID: 17341551 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of CYP2E1 induces HepG2 cells death by the AMP kinase activator 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). Zhuge J Cell Biol Toxicol; 2009 Jun; 25(3):253-63. PubMed ID: 18473182 [TBL] [Abstract][Full Text] [Related]
16. Implication of S-adenosylhomocysteine hydrolase in inhibition of TNF-alpha- and IL-1beta-induced expression of inflammatory mediators by AICAR in RPE cells. Qin S; Ni M; De Vries GW Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1274-81. PubMed ID: 18326758 [TBL] [Abstract][Full Text] [Related]
17. AMPK activation inhibits the expression of HIF-1alpha induced by insulin and IGF-1. Treins C; Murdaca J; Van Obberghen E; Giorgetti-Peraldi S Biochem Biophys Res Commun; 2006 Apr; 342(4):1197-202. PubMed ID: 16516166 [TBL] [Abstract][Full Text] [Related]
18. Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway. Amorino GP; Deeble PD; Parsons SJ Oncogene; 2007 Feb; 26(5):745-56. PubMed ID: 16862179 [TBL] [Abstract][Full Text] [Related]
19. IGF-1 receptor signaling pathways and effects of AMPK activation on IGF-1-induced progesterone secretion in hen granulosa cells. Tosca L; Chabrolle C; Crochet S; Tesseraud S; Dupont J Domest Anim Endocrinol; 2008 Feb; 34(2):204-16. PubMed ID: 17478073 [TBL] [Abstract][Full Text] [Related]
20. Structural insight into AMPK regulation: ADP comes into play. Jin X; Townley R; Shapiro L Structure; 2007 Oct; 15(10):1285-95. PubMed ID: 17937917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]