These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 172893)

  • 41. Xeroderma pigmentosum variants have a slow recovery of DNA synthesis after irradiation with ultraviolet light.
    Cleaver JE; Thomas GH; Park SD
    Biochim Biophys Acta; 1979 Aug; 564(1):122-31. PubMed ID: 534635
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excision repair of mouse and human fibroblast cells, and a factor affecting the amount of UV-induced unscheduled DNA synthesis.
    Yagi T; Nikaido O; Takebe H
    Mutat Res; 1984; 132(3-4):101-12. PubMed ID: 6493258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblasts.
    Kaufmann WK; Cleaver JE
    J Mol Biol; 1981 Jun; 149(2):171-87. PubMed ID: 7310880
    [No Abstract]   [Full Text] [Related]  

  • 44. Ultraviolet-induced movement of the human DNA repair protein, Xeroderma pigmentosum type G, in the nucleus.
    Park MS; Knauf JA; Pendergrass SH; Coulon CH; Strniste GF; Marrone BL; MacInnes MA
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8368-73. PubMed ID: 8710877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relationship between pyrimidine dimers and replicating DNA in UV-irradiated human fibroblasts.
    Lehmann AR
    Nucleic Acids Res; 1979 Dec; 7(7):1901-12. PubMed ID: 231765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excision of ultraviolet and gamma ray products of the 5,6-dihydroxy-dihydrothymine type by nuclear preperations of xeroderma pigmentosum cells.
    Hariharan PV; Cerutti PA
    Biochim Biophys Acta; 1976 Oct; 447(3):375-8. PubMed ID: 974131
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xeroderma pigmentosum: in vitro complementation of DNA repair endonuclease.
    Helland D; Kleppe R; Lillehaug JR; Kleppe K
    Carcinogenesis; 1984 Jun; 5(6):833-6. PubMed ID: 6233045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroporation of normal human DNA endonucleases into xeroderma pigmentosum cells corrects their DNA repair defect.
    Tsongalis GJ; Lambert WC; Lambert MW
    Carcinogenesis; 1990 Mar; 11(3):499-503. PubMed ID: 2311196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Requirement of ATP for specific incision of ultraviolet-damaged DNA during excision repair in permeable human fibroblasts.
    Dresler SL; Lieberman MW
    J Biol Chem; 1983 Oct; 258(20):12269-73. PubMed ID: 6630188
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells.
    Maher VM; Ouellette LM; Curren RD; McCormick JJ
    Nature; 1976 Jun; 261(5561):593-5. PubMed ID: 934300
    [No Abstract]   [Full Text] [Related]  

  • 51. Xeroderma pigmentosum complementation group F: more assignments and repair characteristics.
    Fujiwara Y; Uehara Y; Ichihashi M; Nishioka K
    Photochem Photobiol; 1985 May; 41(5):629-34. PubMed ID: 4011712
    [No Abstract]   [Full Text] [Related]  

  • 52. A new disorder in UV-induced skin cancer with defective DNA repair distinct from xeroderma pigmentosum or Cockayne syndrome.
    Hashimoto S; Egawa K; Ihn H; Igarashi A; Matsunaga T; Tateishi S; Yamaizumi M
    J Invest Dermatol; 2008 Mar; 128(3):694-701. PubMed ID: 17928894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C.
    Mullenders LH; van Kesteren AC; Bussmann CJ; van Zeeland AA; Natarajan AT
    Mutat Res; 1984 Oct; 141(2):75-82. PubMed ID: 6493270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. No lack of complementation for unscheduled DNA synthesis between xeroderma pigmentosum complementation groups D and H.
    Robbins JH
    Hum Genet; 1989 Dec; 84(1):99-101. PubMed ID: 2606486
    [No Abstract]   [Full Text] [Related]  

  • 55. Enzymic mechanism of excision-repair in T4-infected cells.
    Sekiguchi M; Shimizu K; Sato K; Yasuda S; Oshima S
    Basic Life Sci; 1975; 5A():135-42. PubMed ID: 1103820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA repair in xeroderma pigmentosum cells treated with combinations of ultraviolet radiation and N-acetoxy-2-acetylaminofluorene.
    Ahmed FE; Setlow RB
    Cancer Res; 1979 Feb; 39(2 Pt 1):471-9. PubMed ID: 761220
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correction of the ultraviolet light induced DNA-repair defect in xeroderma pigmentosum cells by electroporation of a normal human endonuclease.
    Tsongalis GJ; Lambert WC; Lambert MW
    Mutat Res; 1990 Jul; 244(3):257-63. PubMed ID: 2366820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased UV resistance in xeroderma pigmentosum group A cells after transformation with a human genomic DNA clone.
    Rinaldy A; Bellew T; Egli E; Lloyd RS
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6818-22. PubMed ID: 2168562
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Defective bypass replication of a leading strand cyclobutane thymine dimer in xeroderma pigmentosum variant cell extracts.
    Svoboda DL; Briley LP; Vos JM
    Cancer Res; 1998 Jun; 58(11):2445-8. PubMed ID: 9622087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Endonuclease deficiency in xeroderma pigmentosum].
    Feinstein A
    Harefuah; 1973 May; 84(9):488-90. PubMed ID: 4719222
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.