BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17289680)

  • 1. Flavin binding to the high affinity riboflavin transporter RibU.
    Duurkens RH; Tol MB; Geertsma ER; Permentier HP; Slotboom DJ
    J Biol Chem; 2007 Apr; 282(14):10380-6. PubMed ID: 17289680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RibU is an essential determinant of
    Rivera-Lugo R; Light SH; Garelis NE; Portnoy DA
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2122173119. PubMed ID: 35316134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast excited-state deactivation of flavins bound to dodecin.
    Staudt H; Oesterhelt D; Grininger M; Wachtveitl J
    J Biol Chem; 2012 May; 287(21):17637-17644. PubMed ID: 22451648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse structural genomics: an unusual flavin-binding site in a putative protease from Bacteroides thetaiotaomicron.
    Knaus T; Eger E; Koop J; Stipsits S; Kinsland CL; Ealick SE; Macheroux P
    J Biol Chem; 2012 Aug; 287(33):27490-8. PubMed ID: 22718753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative biochemical and structural analysis of the flavin-binding dodecins from
    Bourdeaux F; Ludwig P; Paithankar K; Sander B; Essen LO; Grininger M; Mack M
    Microbiology (Reading); 2019 Oct; 165(10):1095-1106. PubMed ID: 31339487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the gating mechanism of ECF transporter RibU.
    Song J; Ji C; Zhang JZ
    Sci Rep; 2013 Dec; 3():3566. PubMed ID: 24356467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and mechanism of the S component of a bacterial ECF transporter.
    Zhang P; Wang J; Shi Y
    Nature; 2010 Dec; 468(7324):717-20. PubMed ID: 20972419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of ThiT from Lactococcus lactis: a thiamin transporter with picomolar substrate binding affinity.
    Erkens GB; Slotboom DJ
    Biochemistry; 2010 Apr; 49(14):3203-12. PubMed ID: 20218726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
    Vogl C; Grill S; Schilling O; Stülke J; Mack M; Stolz J
    J Bacteriol; 2007 Oct; 189(20):7367-75. PubMed ID: 17693491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach.
    Shao J; Kuiper BP; Thunnissen AWH; Cool RH; Zhou L; Huang C; Dijkstra BW; Broos J
    J Am Chem Soc; 2022 Aug; 144(30):13815-13822. PubMed ID: 35868012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
    Jin C; Yao Y; Yonezawa A; Imai S; Yoshimatsu H; Otani Y; Omura T; Nakagawa S; Nakagawa T; Matsubara K
    Biol Pharm Bull; 2017; 40(11):1990-1995. PubMed ID: 29093349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites.
    Murray TA; Foster MP; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species.
    Gutiérrez-Preciado A; Torres AG; Merino E; Bonomi HR; Goldbaum FA; García-Angulo VA
    PLoS One; 2015; 10(5):e0126124. PubMed ID: 25938806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis.
    Ludwig P; Sévin DC; Busche T; Kalinowski J; Bourdeaux F; Grininger M; Mack M
    Microbiology (Reading); 2018 Jun; 164(6):908-919. PubMed ID: 29856311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism.
    Karpowich NK; Song JM; Cocco N; Wang DN
    Nat Struct Mol Biol; 2015 Jul; 22(7):565-71. PubMed ID: 26052893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of free and bound riboflavin in cow's milk using a novel flavin-binding protein.
    Koop J; Monschein S; Pauline Macheroux E; Knaus T; Macheroux P
    Food Chem; 2014 Mar; 146():94-7. PubMed ID: 24176318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.