BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 17289907)

  • 1. Hypoxia-induced reactive oxygen species formation in skeletal muscle.
    Clanton TL
    J Appl Physiol (1985); 2007 Jun; 102(6):2379-88. PubMed ID: 17289907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of skeletal muscle mitochondria to hypoxia.
    Hoppeler H; Vogt M; Weibel ER; Flück M
    Exp Physiol; 2003 Jan; 88(1):109-19. PubMed ID: 12525860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-induced skeletal muscle fiber dysfunction: role for reactive nitrogen species.
    Ottenheijm CA; Heunks LM; Geraedts MC; Dekhuijzen PN
    Am J Physiol Lung Cell Mol Physiol; 2006 Jan; 290(1):L127-35. PubMed ID: 16113049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.
    Zuo L; Clanton TL
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C207-16. PubMed ID: 15788484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of glucose transport in skeletal muscle by reactive oxygen species.
    Katz A
    J Appl Physiol (1985); 2007 Apr; 102(4):1671-6. PubMed ID: 17082366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later.
    Hermes-Lima M; Moreira DC; Rivera-Ingraham GA; Giraud-Billoud M; Genaro-Mattos TC; Campos ÉG
    Free Radic Biol Med; 2015 Dec; 89():1122-43. PubMed ID: 26408245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of reactive oxygen species in diaphragm.
    Zuo L; Best TM; Roberts WJ; Diaz PT; Wagner PD
    Acta Physiol (Oxf); 2015 Mar; 213(3):700-10. PubMed ID: 25330121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Reactive oxygen species and redox-signaling during adaptation to changes of oxygen level].
    Sazontova TG; Anchishkina NA; Zhukova AG; Bedareva IV; Pylaeva EA; Kriventsova NA; Polianskaia AA; Iurasov AR; Arkhipenko IuV
    Fiziol Zh (1994); 2008; 54(2):18-32. PubMed ID: 18589683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altitude-induced changes in muscle contractile properties.
    Perrey S; Rupp T
    High Alt Med Biol; 2009; 10(2):175-82. PubMed ID: 19519224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depressed fatigue-induced oxidative stress in chronic hypoxemic humans and rats.
    Steinberg JG; Faucher M; Guillot C; Kipson N; Badier M; Jammes Y
    Respir Physiol Neurobiol; 2004 Jul; 141(2):179-89. PubMed ID: 15239968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Po₂ conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers.
    Zuo L; Shiah A; Roberts WJ; Chien MT; Wagner PD; Hogan MC
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R1009-16. PubMed ID: 23576612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia.
    Gonzalez C; Sanz-Alfayate G; Agapito MT; Gomez-Niño A; Rocher A; Obeso A
    Respir Physiol Neurobiol; 2002 Aug; 132(1):17-41. PubMed ID: 12126693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress.
    Azad MA; Kikusato M; Zulkifli I; Toyomizu M
    Br Poult Sci; 2013; 54(4):503-9. PubMed ID: 23815735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function?
    Jackson MJ
    Free Radic Biol Med; 2008 Jan; 44(2):132-41. PubMed ID: 18191749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies.
    Moulin M; Ferreiro A
    Semin Cell Dev Biol; 2017 Apr; 64():213-223. PubMed ID: 27531051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.
    Cano I; Selivanov V; Gomez-Cabrero D; Tegnér J; Roca J; Wagner PD; Cascante M
    PLoS One; 2014; 9(11):e111068. PubMed ID: 25375931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle.
    Sandström ME; Zhang SJ; Bruton J; Silva JP; Reid MB; Westerblad H; Katz A
    J Physiol; 2006 Aug; 575(Pt 1):251-62. PubMed ID: 16777943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidants and skeletal muscle function: physiologic and pathophysiologic implications.
    Clanton TL; Zuo L; Klawitter P
    Proc Soc Exp Biol Med; 1999 Dec; 222(3):253-62. PubMed ID: 10601884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein carbonylation in skeletal muscles: impact on function.
    Barreiro E; Hussain SN
    Antioxid Redox Signal; 2010 Mar; 12(3):417-29. PubMed ID: 19686036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.