These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1729)

  • 21. Aminoacyl transfer RNA formation. IV. Kinetic evidence of the concerted mechanism of isoleucyl-tRNA formation stimulated by spermine.
    Takeda Y; Matsuzaki K
    Biochem Biophys Res Commun; 1974 Aug; 59(4):1302-10. PubMed ID: 4606203
    [No Abstract]   [Full Text] [Related]  

  • 22. Kinetic techniques for the investigation of amino acid: tRNA ligases (aminoacyl-tRNA synthetases, amino acid activating enzymes).
    Eigner EA; Loftfield RB
    Methods Enzymol; 1974; 29():601-19. PubMed ID: 4368855
    [No Abstract]   [Full Text] [Related]  

  • 23. Purification and properties of leucyl-tRNA synthetase from Candida utilis.
    Murasugi A; Hayashi H
    Eur J Biochem; 1975 Sep; 57(1):169-75. PubMed ID: 1100400
    [No Abstract]   [Full Text] [Related]  

  • 24. Spotlight on targeting aminoacyl-tRNA synthetases for the treatment of fungal infections.
    Ferrer E
    Drug News Perspect; 2006; 19(6):347-8. PubMed ID: 16971970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The complement of cytoplasmic tRNAs, including queuosine-containing tRNAs, in adult and senescent Wistar rat liver and their levels of aminoacylation.
    Cook JR; Buetow DE
    Mech Ageing Dev; 1982 Dec; 20(4):289-304. PubMed ID: 6820101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities.
    Kern D; Lapointe J
    Biochimie; 1979; 61(11-12):1257-72. PubMed ID: 44203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increases in activities of aminoacyl-tRNA synthetases during cold-treatment of dormant pear embryo.
    Tao KL; Khan AA
    Biochem Biophys Res Commun; 1974 Jul; 59(2):764-70. PubMed ID: 4368813
    [No Abstract]   [Full Text] [Related]  

  • 28. Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis.
    Liang G; Liao X; Du G; Chen J
    J Appl Microbiol; 2008 Nov; 105(5):1432-40. PubMed ID: 18828786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Comparative study of cytoplasmic and mitochondrial valyl tRNA of yeast].
    Accoceberry B; Schneller JM; Stahl AJ
    Biochimie; 1973; 55(3):291-6. PubMed ID: 4583049
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanism of chiral-selective tRNA aminoacylation and the origin of amino acid homochirality.
    Tamura K
    Nucleic Acids Symp Ser (Oxf); 2008; (52):415-6. PubMed ID: 18776430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of ethanol and magnesium on aminoacyl-tRNA synthetases activity in rat's liver.
    Pasternak K
    Magnes Res; 1999 Sep; 12(3):171-4. PubMed ID: 10488472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aminoacyl transfer ribonucleic acid synthesis in toluene-treated liver cells.
    Hilderman RH; Deutscher MP
    J Biol Chem; 1974 Aug; 249(16):5346-8. PubMed ID: 4211789
    [No Abstract]   [Full Text] [Related]  

  • 33. Amino acid activation in mammalian brain. Purification and characterization of tryptophan-activating enzyme from buffalo brain.
    Liu CC; Chung CH; Lee ML
    Biochem J; 1973 Oct; 135(2):367-73. PubMed ID: 4587474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition by calcium of tRNA aminoacylation in preparations from rat liver.
    Rao KN; de Smet M; Howells AJ; Bygrave FL
    FEBS Lett; 1974 May; 41(2):185-8. PubMed ID: 4852464
    [No Abstract]   [Full Text] [Related]  

  • 35. Subcellular localization of S-adenosyl-L-methionine:tRNA methyltransferases with aminoacyl-tRNA synthetases in human and mouse: normal and leukemic leukocytes.
    Agris PF; Woolverton DK; Setzer D
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3857-61. PubMed ID: 11466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural alterations of amino acids at the level of aminoacyl-tRNAs: transformation of dicarboxylic amino acids.
    Roux H; Murthy MR
    J Neurochem; 1975 Jun; 24(6):1163-72. PubMed ID: 1127430
    [No Abstract]   [Full Text] [Related]  

  • 37. The control of protein synthesis during the stimulation of lymphocytes by phytohaemagglutinin. III. Poly(U) translation and the rate of polypeptide chain elongation.
    Kay JE; Ahern T; Lindsay VJ; Sampson J
    Biochim Biophys Acta; 1975 Jan; 378(2):241-50. PubMed ID: 1125228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural alterations of amino acids at the level of aminoacyl-tRNAs: identification of the transformation products of dicarboxylic amino acids.
    Murthy MR; Thénot JP; Roux H
    J Neurochem; 1975 Jun; 24(6):1173-80. PubMed ID: 1127431
    [No Abstract]   [Full Text] [Related]  

  • 39. The effects of sulfhydryl reducing and modifying agents on aminoacyl-tRNA synthetases from calf liver.
    Choo AH; Logan DM
    Mol Cell Biochem; 1976 Apr; 11(2):109-12. PubMed ID: 1272256
    [No Abstract]   [Full Text] [Related]  

  • 40. Mechanism of synthesis of adenosine(5')tetraphospho(5')adenosine (AppppA) by aminoacyl-tRNA synthetases.
    Goerlich O; Foeckler R; Holler E
    Eur J Biochem; 1982 Aug; 126(1):135-42. PubMed ID: 7128581
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.