These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17290782)

  • 1. Improvement of metabolic competence of isolated nerve terminals by extracellular pyruvate.
    Tarasenko AS; Linetska MV; Storchak LG; Himmelreich NH
    Ukr Biokhim Zh (1999); 2006; 78(5):51-62. PubMed ID: 17290782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of extracellular lactate/pyruvate for sustaining synaptic vesicle proton gradient generation and vesicular accumulation of GABA.
    Tarasenko AS; Linetska MV; Storchak LG; Himmelreich NH
    J Neurochem; 2006 Nov; 99(3):787-96. PubMed ID: 16836653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool.
    Tarasenko AS; Kostrzhevska OG; Storchak LG; Linetska MV; Borisova TA; Himmelreich NH
    Neurochem Int; 2005 Jun; 46(7):541-50. PubMed ID: 15843048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.
    Tarasenko AS; Storchak LG; Himmelreich NH
    Neurochem Int; 2008 Feb; 52(3):392-400. PubMed ID: 17728017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.
    Krisanova NV; Trikash IO; Borisova TA
    Neurochem Int; 2009 Dec; 55(8):724-31. PubMed ID: 19631248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals.
    Pozdnyakova N; Dudarenko M; Borisova T
    Neuroscience; 2015 Sep; 304():60-70. PubMed ID: 26197223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of synaptosomal cytosolic [3H]GABA pool depletion on secretory ability of alpha-latrotoxin].
    Linets'ka MV; Storchak LH; Himmelreĭch NH
    Ukr Biokhim Zh (1999); 2002; 74(3):65-72. PubMed ID: 12916239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.
    Hrynevich SV; Pekun TG; Waseem TV; Fedorovich SV
    Neurochem Res; 2015 Jun; 40(6):1188-96. PubMed ID: 25894686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitotoxic potential of exogenous ferritin and apoferritin: changes in ambient level of glutamate and synaptic vesicle acidification in brain nerve terminals.
    Krisanova N; Sivko R; Kasatkina L; Borуsov A; Borisova T
    Mol Cell Neurosci; 2014 Jan; 58():95-104. PubMed ID: 24321453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylarsine oxide inhibits alpha-latrotoxin-stimulated [3H]GABA release from rat brain synaptosomes.
    Linetska MV; Storchak LG; Himmelreich NH
    Neurochem Int; 2003 Jun; 42(7):583-90. PubMed ID: 12590941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanolamine and related amino alcohols increase basal and evoked release of [3H]-D-aspartic acid from synaptosomes by enhancing the filling of synaptic vesicles.
    Liao C; Nicholson RA
    Eur J Pharmacol; 2007 Jul; 566(1-3):103-12. PubMed ID: 17448462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.
    Borisova T; Nazarova A; Dekaliuk M; Krisanova N; Pozdnyakova N; Borysov A; Sivko R; Demchenko AP
    Int J Biochem Cell Biol; 2015 Feb; 59():203-15. PubMed ID: 25486182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perinatal hypoxia induces a long-lasting increase in unstimulated gaba release in rat brain cortex and hippocampus. The protective effect of pyruvate.
    Pozdnyakova N; Yatsenko L; Parkhomenko N; Himmelreich N
    Neurochem Int; 2011 Jan; 58(1):14-21. PubMed ID: 20970472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro.
    Holmgren CD; Mukhtarov M; Malkov AE; Popova IY; Bregestovski P; Zilberter Y
    J Neurochem; 2010 Feb; 112(4):900-12. PubMed ID: 19943846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does extracellular calcium determine what pool of GABA is the target for alpha-latrotoxin?
    Storchak LG; Linetska MV; Himmelreich NH
    Neurochem Int; 2002 Apr; 40(5):387-95. PubMed ID: 11821145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of glycine, GABA and glutamate by synaptic vesicles isolated from different regions of rat CNS.
    Christensen H; Fonnum F
    Neurosci Lett; 1991 Aug; 129(2):217-20. PubMed ID: 1684027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into molecular mechanism(s) underlying the presynaptic action of nitric oxide on GABA release.
    Tarasenko A; Krupko O; Himmelreich N
    Biochim Biophys Acta; 2014 Jun; 1840(6):1923-32. PubMed ID: 24480299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic vesicle acidification and exocytosis studied with acridine orange fluorescence in rat brain synaptosomes.
    Melnik VI; Bikbulatova LS; Gulyaeva NV; Bazyan AS
    Neurochem Res; 2001 May; 26(5):549-54. PubMed ID: 11513483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain.
    Nuñez-Figueredo Y; Pardo Andreu GL; Oliveira Loureiro S; Ganzella M; Ramírez-Sánchez J; Ochoa-Rodríguez E; Verdecia-Reyes Y; Delgado-Hernández R; Souza DO
    Neurochem Int; 2015 Feb; 81():41-7. PubMed ID: 25617730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G
    J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.