These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17290874)

  • 1. [Theoretical analysis of the sinus node pacemaker responses modes depending on temporal characteristics of acetylcholine effect upon them].
    Aliev RR; Rozenshtraukh LV
    Ross Fiziol Zh Im I M Sechenova; 2006 Sep; 92(9):1069-77. PubMed ID: 17290874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Computer simulation of the sinoatrial node pacemaker synchronization in response to periodic stimulation of the vagus nerve].
    Aliev RR
    Biofizika; 2008; 53(6):1125-8. PubMed ID: 19137701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vagal control of sinoatrial rhythm: a mathematical model.
    Dokos S; Celler BG; Lovell NH
    J Theor Biol; 1996 Sep; 182(1):21-44. PubMed ID: 8917735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model of dependence of heart rate on tissue concentration of acetylcholine.
    Dexter F; Saidel GM; Levy MN; Rudy Y
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H520-6. PubMed ID: 2916685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vagal stimulation and applied acetylcholine on pacemaker potentials in the guinea-pig heart.
    Campbell GD; Edwards FR; Hirst GD; O'Shea JE
    J Physiol; 1989 Aug; 415():57-68. PubMed ID: 2640469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of DiFrancesco-Noble equations to simulate the effects of vagal stimulation on in vivo mammalian sinoatrial node electrical activity.
    Dokos S; Celler BG; Lovell NH
    Ann Biomed Eng; 1993; 21(4):321-35. PubMed ID: 8214817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node.
    Jalife J; Slenter VA; Salata JJ; Michaels DC
    Circ Res; 1983 Jun; 52(6):642-56. PubMed ID: 6861283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained increases in heart rate induced by timed repetition of vagal stimulation in dogs.
    Yang T; Jacobstein MD; Levy MN
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H703-9. PubMed ID: 4051008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Theoretical and experimental study of the sinoatrial node pacemaker cell response modality in vagal stimulation].
    Aliev RR; abramochkin DV; Rozenshtraukh LV
    Ross Fiziol Zh Im I M Sechenova; 2009 Jan; 95(1):49-57. PubMed ID: 19323443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pacemaker shift in the sino-atrial node during vagal stimulation.
    Bouman LN; Gerlings ED; Biersteker PA; Bonke FI
    Pflugers Arch; 1968; 302(3):255-67. PubMed ID: 5748559
    [No Abstract]   [Full Text] [Related]  

  • 11. Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance.
    Ashton JL; Trew ML; LeGrice IJ; Paterson DJ; Paton JF; Gillis AM; Smaill BH
    J Physiol; 2019 Jul; 597(13):3297-3313. PubMed ID: 31087820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of Ba2+ and Cs+ to block the effects of vagal nerve stimulation in sinoatrial node cells of the guinea-pig heart.
    Bolter CP; Wallace DJ; Hirst GD
    Auton Neurosci; 2001 Dec; 94(1-2):93-101. PubMed ID: 11775712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phase-sensitive vagal heart-rate control model.
    Weaver CS; Dong E
    J Theor Biol; 1972 Aug; 36(2):291-311. PubMed ID: 5073920
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of tertiapin-Q on responses of the sinoatrial pacemaker of the guinea-pig heart to vagal nerve stimulation and muscarinic agonists.
    Bolter CP; English DJ
    Exp Physiol; 2008 Jan; 93(1):53-63. PubMed ID: 17720744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional differences in the response of the isolated sino-atrial node of the rabbit to vagal stimulation.
    Kodama I; Boyett MR; Suzuki R; Honjo H; Toyama J
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):785-801. PubMed ID: 8887783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node.
    Shimizu S; Akiyama T; Kawada T; Shishido T; Yamazaki T; Kamiya A; Mizuno M; Sano S; Sugimachi M
    Auton Neurosci; 2009 Jun; 148(1-2):44-9. PubMed ID: 19278905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of the vagally driven primary pacemaker.
    Bristow DG; Clark JW
    Am J Physiol; 1983 Jan; 244(1):H150-61. PubMed ID: 6295188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transposition of the pacemaker in the right atrium during stimulation of the vagus nerve in the dog].
    Adomonis VM; Bredikis IuIu; Bukauskas FF; Lukoshiavichius KK; Mutskus KS
    Biull Eksp Biol Med; 1987 Apr; 103(4):387-90. PubMed ID: 3567329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threshold effects of acetylcholine on primary pacemaker cells of the rabbit sino-atrial node.
    Shibata EF; Giles W; Pollack GH
    Proc R Soc Lond B Biol Sci; 1985 Jan; 223(1232):355-78. PubMed ID: 2858102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the spatial dispersion of acetylcholine release on the chronotropic responses to vagal stimulation in dogs.
    Yang TE; Cheng J; Levy MN
    Circ Res; 1990 Oct; 67(4):844-51. PubMed ID: 2208610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.