These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17290969)

  • 1. Influencing factors and a proposed evaluation methodology for predicting groundwater contamination potential from stormwater infiltration activities.
    Clark SE; Pitt R
    Water Environ Res; 2007 Jan; 79(1):29-36. PubMed ID: 17290969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices.
    Pinasseau L; Wiest L; Volatier L; Mermillod-Blondin F; Vulliet E
    Environ Pollut; 2020 Nov; 266(Pt 2):115387. PubMed ID: 32829126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal evolution and spatial distribution of heavy metals in a stormwater infiltration basin--estimation of the mass of trapped pollutants.
    Le Coustumer S; Moura P; Barraud S; Clozel B; Varnier JC
    Water Sci Technol; 2007; 56(12):93-100. PubMed ID: 18075184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local infiltration devices at parking sites--experimental assessment of temporal changes in hydraulic and contaminant removal capacity.
    Achleitner S; Engelhard C; Stegner U; Rauch W
    Water Sci Technol; 2007; 55(4):193-200. PubMed ID: 17425086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of groundwater velocity on sampling intervals for contaminant-detection networks in aquifers.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(1):117-22. PubMed ID: 11381781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring groundwater at landfills equipped with leachate collection systems.
    Hudak PF
    Bull Environ Contam Toxicol; 2001 Feb; 66(2):156-61. PubMed ID: 11116309
    [No Abstract]   [Full Text] [Related]  

  • 7. Model description of storage and infiltration functions of infiltration facilities for urban runoff analysis by a distributed model.
    Furumai H; Jinadasa HK; Murakami M; Nakajima F; Aryal RK
    Water Sci Technol; 2005; 52(5):53-60. PubMed ID: 16248180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.
    Cahoon LB; Hales JC; Carey ES; Loucaides S; Rowland KR; Toothman BR
    Environ Monit Assess; 2016 Feb; 188(2):89. PubMed ID: 26769702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term hydraulic and pollution retention performance of infiltration systems.
    Le Coustumer S; Barraud S
    Water Sci Technol; 2007; 55(4):235-43. PubMed ID: 17425091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple methodology for the evaluation of groundwater pollution risks.
    Fernández-Gálvez J; Barahona E; Iriarte A; Mingorance MD
    Sci Total Environ; 2007 May; 378(1-2):67-70. PubMed ID: 17287011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.
    Voisin J; Cournoyer B; Vienney A; Mermillod-Blondin F
    Sci Total Environ; 2018 Oct; 637-638():1496-1507. PubMed ID: 29801243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributing to the sustainable use of stormwater: the role of pervious pavements.
    Jayasuriya LN; Kadurupokune N; Othman M; Jesse K
    Water Sci Technol; 2007; 56(12):69-75. PubMed ID: 18075181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers.
    Kuroda K; Murakami M; Oguma K; Muramatsu Y; Takada H; Takizawa S
    Environ Sci Technol; 2012 Feb; 46(3):1455-64. PubMed ID: 22191375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.
    Sadat-Noori M; Ebrahimi K
    Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of pollutant loading estimation using different land uses and stormwater characteristics in Ballona Creek Watershed.
    Park MH; Stenstrom MK
    Water Sci Technol; 2008; 57(9):1349-54. PubMed ID: 18495998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of artificial groundwater recharge potential through estimation of permeability values from infiltration and aquifer tests in unconsolidated alluvial formations in coastal areas.
    Masoud MHZ; Basahi JM; Zaidi FK
    Environ Monit Assess; 2018 Dec; 191(1):31. PubMed ID: 30591977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal concentrations in soil and seepage water due to infiltration of roof runoff by long term numerical modelling.
    Zimmermann J; Dierkes C; Göbel P; Klinger C; Stubbe H; Coldewey WG
    Water Sci Technol; 2005; 51(2):11-9. PubMed ID: 15790223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of a monitoring system to measure impact of stormwater runoff infiltration.
    Barraud S; Gibert J; Winiarski T; Bertrand Krajewski JL
    Water Sci Technol; 2002; 45(3):203-10. PubMed ID: 11905441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting nonpoint stormwater runoff quality from land use.
    Zivkovich BR; Mays DC
    PLoS One; 2018; 13(5):e0196782. PubMed ID: 29742172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of storm water on groundwater quality below retention/detention basins.
    Zubair A; Hussain A; Farooq MA; Abbasi HN
    Environ Monit Assess; 2010 Mar; 162(1-4):427-37. PubMed ID: 19241126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.