These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 17290990)
1. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. Shultz MD; Reveles JU; Khanna SN; Carpenter EE J Am Chem Soc; 2007 Mar; 129(9):2482-7. PubMed ID: 17290990 [TBL] [Abstract][Full Text] [Related]
2. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564 [TBL] [Abstract][Full Text] [Related]
3. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. Xu C; Xu K; Gu H; Zheng R; Liu H; Zhang X; Guo Z; Xu B J Am Chem Soc; 2004 Aug; 126(32):9938-9. PubMed ID: 15303865 [TBL] [Abstract][Full Text] [Related]
5. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans. Chen Y; Suzuki I Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867 [TBL] [Abstract][Full Text] [Related]
6. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Xue X; Hanna K; Deng N J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810 [TBL] [Abstract][Full Text] [Related]
7. D-mannose-modified iron oxide nanoparticles for stem cell labeling. Horak D; Babic M; Jendelová P; Herynek V; Trchová M; Pientka Z; Pollert E; Hájek M; Syková E Bioconjug Chem; 2007; 18(3):635-44. PubMed ID: 17370996 [TBL] [Abstract][Full Text] [Related]
8. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings. Dengxin L; Guolong G; Fanling M; Chong J J Hazard Mater; 2008 Jun; 155(1-2):369-77. PubMed ID: 18164812 [TBL] [Abstract][Full Text] [Related]
9. Surfactant templating effects on the encapsulation of iron oxide nanoparticles within silica microspheres. Zheng T; Pang J; Tan G; He J; McPherson GL; Lu Y; John VT; Zhan J Langmuir; 2007 Apr; 23(9):5143-7. PubMed ID: 17397201 [TBL] [Abstract][Full Text] [Related]
10. Iron oxide/hydroxide nanoparticles with negatively charged shells show increased uptake in Caco-2 cells. Jahn MR; Nawroth T; Fütterer S; Wolfrum U; Kolb U; Langguth P Mol Pharm; 2012 Jun; 9(6):1628-37. PubMed ID: 22587679 [TBL] [Abstract][Full Text] [Related]
11. Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering. Hernández R; Sacristán J; Nogales A; Ezquerra TA; Mijangos C Langmuir; 2009 Nov; 25(22):13212-8. PubMed ID: 19769342 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles. Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Iida H; Takayanagi K; Nakanishi T; Osaka T J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605 [TBL] [Abstract][Full Text] [Related]
15. Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Zhou ZD; Lan YH; Tan EK; Lim TM Free Radic Biol Med; 2010 Dec; 49(12):1856-71. PubMed ID: 20854902 [TBL] [Abstract][Full Text] [Related]
16. Make conjugation simple: a facile approach to integrated nanostructures. Xu Y; Palchoudhury S; Qin Y; Macher T; Bao Y Langmuir; 2012 Jun; 28(23):8767-72. PubMed ID: 22607168 [TBL] [Abstract][Full Text] [Related]
17. Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. Park CD; Walker J; Tannenbaum R; Stiegman AE; Frydrych J; Machala L ACS Appl Mater Interfaces; 2009 Sep; 1(9):1843-6. PubMed ID: 20355802 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticancer therapy. Gu H; Xu K; Yang Z; Chang CK; Xu B Chem Commun (Camb); 2005 Sep; (34):4270-2. PubMed ID: 16113718 [TBL] [Abstract][Full Text] [Related]
19. Green one-pot assembly of iron-based nanomaterials for the rational design of structure. Park H; Lee YC; Choi BG; Choi YS; Yang JW; Hong WH Chem Commun (Camb); 2009 Jul; (27):4058-60. PubMed ID: 19568632 [TBL] [Abstract][Full Text] [Related]
20. Forming the phosphate layer in reconstituted horse spleen ferritin and the role of phosphate in promoting core surface redox reactions. Johnson JL; Cannon M; Watt RK; Frankel RB; Watt GD Biochemistry; 1999 May; 38(20):6706-13. PubMed ID: 10350490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]