BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 17291015)

  • 1. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices.
    Weber N; Pesnell A; Bolikal D; Zeltinger J; Kohn J
    Langmuir; 2007 Mar; 23(6):3298-304. PubMed ID: 17291015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of viscoelastic protein layers on polymeric surfaces relevant to platelet adhesion.
    Weber N; Wendel HP; Kohn J
    J Biomed Mater Res A; 2005 Mar; 72(4):420-7. PubMed ID: 15678483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique.
    Weber N; Bolikal D; Bourke SL; Kohn J
    J Biomed Mater Res A; 2004 Mar; 68(3):496-503. PubMed ID: 14762929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.
    Anand G; Zhang F; Linhardt RJ; Belfort G
    Langmuir; 2011 Mar; 27(5):1830-6. PubMed ID: 21182242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of interpenetrating polymer networks via quartz crystal microbalance with dissipation monitoring.
    Irwin EF; Ho JE; Kane SR; Healy KE
    Langmuir; 2005 Jun; 21(12):5529-36. PubMed ID: 15924485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic protein adsorption at the polyurethane copolymer/water interface.
    Yaseen M; Salacinski HJ; Seifalian AM; Lu JR
    Biomed Mater; 2008 Sep; 3(3):034123. PubMed ID: 18765894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces.
    Andersson M; Andersson J; Sellborn A; Berglin M; Nilsson B; Elwing H
    Biosens Bioelectron; 2005 Jul; 21(1):79-86. PubMed ID: 15967354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive protein adsorption on micro patterned polymeric biomaterials, and viscoelastic properties of tailor made extracellular matrices.
    Welle A; Chiumiento A; Barbucci R
    Biomol Eng; 2007 Feb; 24(1):87-91. PubMed ID: 16861035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrinogen adsorption and conformational change on model polymers: novel aspects of mutual molecular rearrangement.
    Berglin M; Pinori E; Sellborn A; Andersson M; Hulander M; Elwing H
    Langmuir; 2009 May; 25(10):5602-8. PubMed ID: 19366199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive adsorption of vitronectin with albumin, fibrinogen, and fibronectin on polymeric biomaterials.
    Fabrizius-Homan DJ; Cooper SL
    J Biomed Mater Res; 1991 Aug; 25(8):953-71. PubMed ID: 1717474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of hydroxyapatite ultra-thin layer on gold surface and its application for quartz crystal microbalance technique.
    Monkawa A; Ikoma T; Yunoki S; Yoshioka T; Tanaka J; Chakarov D; Kasemo B
    Biomaterials; 2006 Nov; 27(33):5748-54. PubMed ID: 16905184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood compatibility of surfaces with superlow protein adsorption.
    Zhang Z; Zhang M; Chen S; Horbett TA; Ratner BD; Jiang S
    Biomaterials; 2008 Nov; 29(32):4285-91. PubMed ID: 18722010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D).
    Feiler AA; Sahlholm A; Sandberg T; Caldwell KD
    J Colloid Interface Sci; 2007 Nov; 315(2):475-81. PubMed ID: 17706239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR.
    Malmström J; Agheli H; Kingshott P; Sutherland DS
    Langmuir; 2007 Sep; 23(19):9760-8. PubMed ID: 17691829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postadsorptive transitions in fibrinogen: influence of polymer properties.
    Rapoza RJ; Horbett TA
    J Biomed Mater Res; 1990 Oct; 24(10):1263-87. PubMed ID: 2283349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid-liquid interface.
    Dutta AK; Nayak A; Belfort G
    J Colloid Interface Sci; 2008 Aug; 324(1-2):55-60. PubMed ID: 18508070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of protein adsorption: surface-induced conformational changes.
    Roach P; Farrar D; Perry CC
    J Am Chem Soc; 2005 Jun; 127(22):8168-73. PubMed ID: 15926845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study viscoelasticity of ultrathin poly(oligo(ethylene glycol) methacrylate) brushes by a quartz crystal microbalance with dissipation.
    Fu L; Chen X; He J; Xiong C; Ma H
    Langmuir; 2008 Jun; 24(12):6100-6. PubMed ID: 18481877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of fibrinogen with surfaces of end-group-modified polyurethanes: a surface-specific sum-frequency-generation vibrational spectroscopy study.
    Chen Z; Ward R; Tian Y; Malizia F; Gracias DH; Shen YR; Somorjai GA
    J Biomed Mater Res; 2002 Nov; 62(2):254-64. PubMed ID: 12209946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.