BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17291037)

  • 1. Synthesis of alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer-monomer pair reaction system.
    Guo R; Zhang L; Jiang Z; Cao Y; Ding Y; Jiang X
    Biomacromolecules; 2007 Mar; 8(3):843-50. PubMed ID: 17291037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery.
    Guo R; Li R; Li X; Zhang L; Jiang X; Liu B
    Small; 2009 Mar; 5(6):709-17. PubMed ID: 19235799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength.
    Cai H; Ni C; Zhang L
    Eur J Pharm Sci; 2012 Jan; 45(1-2):43-9. PubMed ID: 22079138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels.
    Tan BH; Ravi P; Tan LN; Tam KC
    J Colloid Interface Sci; 2007 May; 309(2):453-63. PubMed ID: 17307196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering.
    Hernández R; Sacristán J; Nogales A; Ezquerra TA; Mijangos C
    Langmuir; 2009 Nov; 25(22):13212-8. PubMed ID: 19769342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability.
    Jiang X; Ge Z; Xu J; Liu H; Liu S
    Biomacromolecules; 2007 Oct; 8(10):3184-92. PubMed ID: 17887794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver uptake and nanoprecipitation on calcium alginate beads.
    Torres E; Mata YN; Blázquez ML; Muñoz JA; González F; Ballester A
    Langmuir; 2005 Aug; 21(17):7951-8. PubMed ID: 16089404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme.
    Rawat M; Singh D; Saraf S; Saraf S
    Drug Dev Ind Pharm; 2008 Feb; 34(2):181-8. PubMed ID: 18302037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly methacrylic acid-alginate semi-IPN microparticles for oral delivery of insulin: a preliminary investigation.
    Sajeesh S; Sharma CP
    J Biomater Appl; 2004 Jul; 19(1):35-45. PubMed ID: 15245642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+) cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants.
    Astete CE; Sabliov CM; Watanabe F; Biris A
    J Agric Food Chem; 2009 Aug; 57(16):7505-12. PubMed ID: 19645512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery.
    Sun HW; Zhang LY; Zhu XJ; Wang XF
    J Biomater Sci Polym Ed; 2009; 20(12):1675-86. PubMed ID: 19723435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of aligned hematite nanoparticles on chitosan-alginate films.
    Sreeram KJ; Nidhin M; Nair BU
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):260-7. PubMed ID: 19303261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of block copolymer micelles into multilayer films for use as nanodelivery systems.
    Addison T; Cayre OJ; Biggs S; Armes SP; York D
    Langmuir; 2008 Dec; 24(23):13328-33. PubMed ID: 18954152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo antitumor activity of doxorubicin-loaded alginic-acid-based nanoparticles.
    Cheng Y; Yu S; Wang J; Qian H; Wu W; Jiang X
    Macromol Biosci; 2012 Oct; 12(10):1326-35. PubMed ID: 22887841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex.
    Cafaggi S; Russo E; Stefani R; Leardi R; Caviglioli G; Parodi B; Bignardi G; De Totero D; Aiello C; Viale M
    J Control Release; 2007 Aug; 121(1-2):110-23. PubMed ID: 17601625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system.
    Cheng Y; Yu S; Zhen X; Wang X; Wu W; Jiang X
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5325-32. PubMed ID: 23020277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ions on the aggregation behavior of natural polymer alginate.
    Yu CY; Wei H; Zhang Q; Zhang XZ; Cheng SX; Zhuo RX
    J Phys Chem B; 2009 Nov; 113(45):14839-43. PubMed ID: 19831369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.