These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 17291159)

  • 1. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.
    Yu H; Ma L; Yang Y; Cui Q
    PLoS Comput Biol; 2007 Feb; 3(2):e21. PubMed ID: 17291159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues.
    Yu H; Ma L; Yang Y; Cui Q
    PLoS Comput Biol; 2007 Feb; 3(2):e23. PubMed ID: 17305418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural mechanism of the recovery stroke in the myosin molecular motor.
    Fischer S; Windshügel B; Horak D; Holmes KC; Smith JC
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6873-8. PubMed ID: 15863618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation in the SH1 helix reduces the activation energy of the ATP-induced conformational transition of myosin.
    Iwai S; Chaen S
    Biochem Biophys Res Commun; 2007 May; 357(1):325-9. PubMed ID: 17416346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
    Koppole S; Smith JC; Fischer S
    J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive conformational transitions are required to turn on ATP hydrolysis in myosin.
    Yang Y; Yu H; Cui Q
    J Mol Biol; 2008 Sep; 381(5):1407-20. PubMed ID: 18619975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosin motor domain lever arm rotation is coupled to ATP hydrolysis.
    Highsmith S; Polosukhina K; Eden D
    Biochemistry; 2000 Oct; 39(40):12330-5. PubMed ID: 11015212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperativity of myosin molecules through strain-dependent chemistry.
    Duke T
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):529-38. PubMed ID: 10836506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
    Mesentean S; Koppole S; Smith JC; Fischer S
    J Mol Biol; 2007 Mar; 367(2):591-602. PubMed ID: 17275022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography.
    Málnási-Csizmadia A; Woolley RJ; Bagshaw CR
    Biochemistry; 2000 Dec; 39(51):16135-46. PubMed ID: 11123942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new structural state of myosin.
    Kull FJ; Endow SA
    Trends Biochem Sci; 2004 Mar; 29(3):103-6. PubMed ID: 15055201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins.
    Suzuki Y
    Methods; 2000 Dec; 22(4):355-63. PubMed ID: 11133241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy transduction in a chemical motor model.
    Baker JE
    J Theor Biol; 2004 Jun; 228(4):467-76. PubMed ID: 15178196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple models for extracting mechanical work from the ATP hydrolysis cycle.
    Eide JL; Chakraborty AK; Oster GF
    Biophys J; 2006 Jun; 90(12):4281-94. PubMed ID: 16581833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase.
    Li G; Cui Q
    Biophys J; 2004 Feb; 86(2):743-63. PubMed ID: 14747312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis.
    Blanc FEC; Houdusse A; Cecchini M
    PLoS Comput Biol; 2024 Apr; 20(4):e1012005. PubMed ID: 38662764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotation of F1-ATPase: how an ATP-driven molecular machine may work.
    Kinosita K; Adachi K; Itoh H
    Annu Rev Biophys Biomol Struct; 2004; 33():245-68. PubMed ID: 15139813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of force and displacement within the myosin molecule.
    Ohki T; Mikhailenko SV; Morales MF; Onishi H; Mochizuki N
    Biochemistry; 2004 Nov; 43(43):13707-14. PubMed ID: 15504033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative effects on the kinetics of ATP hydrolysis in collective molecular motors.
    Shu Y; Shi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021912. PubMed ID: 14995496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.