These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1729142)

  • 1. Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser.
    Berns MW; Aist JR; Wright WH; Liang H
    Exp Cell Res; 1992 Feb; 198(2):375-8. PubMed ID: 1729142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of cells by optical trapping and manipulation of living cells using infrared laser beams.
    Ashkin A
    ASGSB Bull; 1991 Jul; 4(2):133-46. PubMed ID: 11537176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges.
    Vorobjev IA; Liang H; Wright WH; Berns MW
    Biophys J; 1993 Feb; 64(2):533-8. PubMed ID: 8457677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength dependence of cell cloning efficiency after optical trapping.
    Liang H; Vu KT; Krishnan P; Trang TC; Shin D; Kimel S; Berns MW
    Biophys J; 1996 Mar; 70(3):1529-33. PubMed ID: 8785310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm.
    Siltanen M; Vainio M; Halonen L
    Opt Express; 2010 Jun; 18(13):14087-92. PubMed ID: 20588540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of 3.5W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser.
    Ding X; Wang R; Zhang H; Wen WQ; Huang L; Wang P; Yao JQ; Yu XY; Li Z
    Opt Express; 2008 Mar; 16(7):4582-7. PubMed ID: 18542555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The design of all solid-state tunable pulsed Ti:sapphire laser system].
    Chen Z; Ku G; Wan J; Wang W; Zhou C
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 May; 37(3):185-8. PubMed ID: 24015611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact neodymium:YAG laser. Experimental studies and oculoplastic applications.
    Dickson JB; Flanagan JC; Federman JL
    Ophthalmic Plast Reconstr Surg; 1989; 5(1):17-26. PubMed ID: 2487191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contact neodymium-yttrium aluminum garnet laser. A new approach to arthroscopic laser surgery.
    O'Brien SJ; Miller DV
    Clin Orthop Relat Res; 1990 Mar; (252):95-100. PubMed ID: 2302897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of onychomycosis using a submillisecond 1064-nm neodymium:yttrium-aluminum-garnet laser.
    Carney C; Cantrell W; Warner J; Elewski B
    J Am Acad Dermatol; 2013 Oct; 69(4):578-82. PubMed ID: 23856649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The 1.320 micron Nd-YAG laser. Experimental study of a new wavelength adapted to neurosurgery].
    Roux FX; Mordon S; Mondragon S; Sahafi F; Fallet-Bianco C; Brunetaud JM
    Neurochirurgie; 1989; 35(3):152-7. PubMed ID: 2516297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromanipulation of mitotic chromosomes in PTK2 cells using laser-induced optical forces ("optical tweezers").
    Liang H; Wright WH; He W; Berns MW
    Exp Cell Res; 1991 Nov; 197(1):21-35. PubMed ID: 1915660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle.
    Berns MW; Wright WH; Tromberg BJ; Profeta GA; Andrews JJ; Walter RJ
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4539-43. PubMed ID: 2734304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A widely tunable dual-wavelength CW Ti:sapphire laser with collinear output.
    Luo CW; Yang YQ; Mak IT; Chang YH; Wu KH; Kobayashi T
    Opt Express; 2008 Mar; 16(5):3305-9. PubMed ID: 18542419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping and manipulation of single cells using infrared laser beams.
    Ashkin A; Dziedzic JM; Yamane T
    Nature; 1987 Dec 24-31; 330(6150):769-71. PubMed ID: 3320757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of antimicrobial effects of Er:YAG, diode, and CO₂ lasers on titanium discs: an experimental study.
    Tosun E; Tasar F; Strauss R; Kıvanc DG; Ungor C
    J Oral Maxillofac Surg; 2012 May; 70(5):1064-9. PubMed ID: 22285338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the source of laser energy influence the coagulation of chorionic plate vessels? Comparison of Nd:YAG and diode laser on an ex vivo placental model.
    Nizard J; Barbet JP; Ville Y
    Fetal Diagn Ther; 2007; 22(1):33-7. PubMed ID: 17003553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.
    Wang CC; Huang CL; Yang AH; Chen CK; Lee SC; Leu FJ
    Dermatol Surg; 2010 Nov; 36(11):1656-63. PubMed ID: 20840495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.
    Kim K; Kim IS; Cho TH; Seo YK; Hwang SJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):943-51. PubMed ID: 24254743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. US-guided application of Nd:YAG laser in porcine pancreatic tissue: an ex vivo study and numerical simulation.
    Di Matteo F; Martino M; Rea R; Pandolfi M; Panzera F; Stigliano E; Schena E; Saccomandi P; Silvestri S; Pacella CM; Breschi L; Perrone G; Coppola R; Costamagna G
    Gastrointest Endosc; 2013 Nov; 78(5):750-5. PubMed ID: 23680175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.