BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17291842)

  • 1. Surface modification of three-dimensional poly(d,l-lactic acid) scaffolds with baicalin: a histological study.
    Cai K; Yao K; Yang Z; Li X
    Acta Biomater; 2007 Jul; 3(4):597-605. PubMed ID: 17291842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological study of surface modified three dimensional poly (D, L-lactic acid) scaffolds with chitosan in vivo.
    Cai K; Yao K; Yang Z; Qu Y; Li X
    J Mater Sci Mater Med; 2007 Oct; 18(10):2017-24. PubMed ID: 17558475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.
    Mahjoubi H; Kinsella JM; Murshed M; Cerruti M
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9975-87. PubMed ID: 24965034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Studies on poly-D, L-lactide acid scaffolds modified by conjugation of bioactive peptides via ammonia plasma treatment].
    Xu Z; Chen J; Yin S; Zhu Q; Li T; Zha D; Jiang X; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Nov; 24(11):1376-85. PubMed ID: 21226366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification.
    Wu C; Ramaswamy Y; Boughton P; Zreiqat H
    Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation and in vitro characterization of novel hydrophilic poly(D,L-lactide)/poly (ethylene glycol)-poly (lactide) composite scaffolds].
    Sun R; Pan G; Zhang L; Du J; Xiong C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):91-6. PubMed ID: 17333899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Osteogenic effect of peptides anchored aminated tissue engineered bone for repairing femoral defect in rats].
    Xu Z; Chen J; Xu W; Zhu X; Wang C; Luo H; Li G; Chen R
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):520-8. PubMed ID: 23879086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Manufacture and biocompatibility study of poly-D,L-lactic acid plate containing rhBMP-2].
    Guo S; Wang J; Fan C; Ni W; Zeng B; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):173-7. PubMed ID: 18365613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of bioactive and biodegradable wollastonite/poly(D,L-lactic acid) composite scaffolds.
    Li H; Chang J
    J Mater Sci Mater Med; 2004 Oct; 15(10):1089-95. PubMed ID: 15516869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid).
    Jansen J; Koopmans SA; Los LI; van der Worp RJ; Podt JG; Hooymans JM; Feijen J; Grijpma DW
    Biomaterials; 2011 Aug; 32(22):4994-5002. PubMed ID: 21507481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass composite foam scaffolds: assessment of cell attachment, proliferation and extracellular matrix production.
    Helen W; Merry CL; Blaker JJ; Gough JE
    Biomaterials; 2007 Apr; 28(11):2010-20. PubMed ID: 17250887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a methodology for the effective surface modification of porous polymer scaffolds.
    Safinia L; Datan N; Höhse M; Mantalaris A; Bismarck A
    Biomaterials; 2005 Dec; 26(36):7537-47. PubMed ID: 16009420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biocompatibility of new bone tissue engineering scaffolds in vivo].
    Li Y; Ran W; Wang GL; Jing XD
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2009 Aug; 27(4):447-50. PubMed ID: 19769271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferation of chondrocytes on porous poly(DL-lactide)/chitosan scaffolds.
    Wu H; Wan Y; Cao X; Wu Q
    Acta Biomater; 2008 Jan; 4(1):76-87. PubMed ID: 17986398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment.
    Verrier S; Blaker JJ; Maquet V; Hench LL; Boccaccini AR
    Biomaterials; 2004 Jul; 25(15):3013-21. PubMed ID: 14967534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly-D-L-Lactic Acid Membranes for Bone Regeneration.
    Annunziata M; Nastri L; Borgonovo A; Benigni M; Poli PP
    J Craniofac Surg; 2015 Jul; 26(5):1691-6. PubMed ID: 26114511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.