BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 17292114)

  • 1. Electrospun bioscaffolds that mimic the topology of extracellular matrix.
    Han D; Gouma PI
    Nanomedicine; 2006 Mar; 2(1):37-41. PubMed ID: 17292114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The biologic functional surfaces and their applications in tissue engineering].
    Yao F; Chen M; Zhang H; Zhang H; An X; Yao K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1177-9, 1199. PubMed ID: 18027721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotubes in scaffolds for tissue engineering.
    Edwards SL; Werkmeister JA; Ramshaw JA
    Expert Rev Med Devices; 2009 Sep; 6(5):499-505. PubMed ID: 19751122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder.
    Freytes DO; Tullius RS; Valentin JE; Stewart-Akers AM; Badylak SF
    J Biomed Mater Res A; 2008 Dec; 87(4):862-72. PubMed ID: 18228251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials and scaffold design: key to tissue-engineering cartilage.
    Raghunath J; Rollo J; Sales KM; Butler PE; Seifalian AM
    Biotechnol Appl Biochem; 2007 Feb; 46(Pt 2):73-84. PubMed ID: 17227284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques.
    Kidoaki S; Kwon IK; Matsuda T
    Biomaterials; 2005 Jan; 26(1):37-46. PubMed ID: 15193879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications.
    Erisken C; Kalyon DM; Wang H
    Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous scaffold design for tissue engineering.
    Hollister SJ
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers.
    Zhang YZ; Su B; Venugopal J; Ramakrishna S; Lim CT
    Int J Nanomedicine; 2007; 2(4):623-38. PubMed ID: 18203429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering functionally graded tissue engineering scaffolds.
    Leong KF; Chua CK; Sudarmadji N; Yeong WY
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):140-52. PubMed ID: 19627779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun scaffold tailored for tissue-specific extracellular matrix.
    Teo WE; He W; Ramakrishna S
    Biotechnol J; 2006 Sep; 1(9):918-29. PubMed ID: 16941439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture.
    Schindler M; Ahmed I; Kamal J; Nur-E-Kamal A; Grafe TH; Young Chung H; Meiners S
    Biomaterials; 2005 Oct; 26(28):5624-31. PubMed ID: 15878367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.