BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 17292122)

  • 1. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.
    Ho D; Chang S; Montemagno CD
    Nanomedicine; 2006 Jun; 2(2):103-12. PubMed ID: 17292122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copolymeric nanofilm platform for controlled and localized therapeutic delivery.
    Chow EK; Pierstorff E; Cheng G; Ho D
    ACS Nano; 2008 Jan; 2(1):33-40. PubMed ID: 19206545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy.
    Kristalyn CB; Lu X; Weinman CJ; Ober CK; Kramer EJ; Chen Z
    Langmuir; 2010 Jul; 26(13):11337-43. PubMed ID: 20465236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphiphilic siloxane phosphonate macromolecule monolayers at the air/water interface: effects of structure and temperature.
    Cabasso I; Stesikova E
    J Phys Chem B; 2008 Nov; 112(46):14379-89. PubMed ID: 18610958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional self-assembly of linear poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers at the air-water interface.
    Joncheray TJ; Denoncourt KM; Meier MA; Schubert US; Duran RS
    Langmuir; 2007 Feb; 23(5):2423-9. PubMed ID: 17243736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of microscopic and planar oil-water interfaces that are decorated with prescribed densities of insoluble amphiphiles.
    Meli MV; Lin IH; Abbott NL
    J Am Chem Soc; 2008 Apr; 130(13):4326-33. PubMed ID: 18335929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface thermodynamic properties of monolayers versus reconstitution of a membrane protein in solid-supported bilayers.
    Merino S; Domènech O; Díez-Pérez I; Sanz F; Montero MT; Hernández-Borrell J
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):93-8. PubMed ID: 16023838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parylene-encapsulated copolymeric membranes as localized and sustained drug delivery platforms.
    Chen M; Huang H; Pierstorff E; Shin E; Robinson E; Ho D
    Ann Biomed Eng; 2009 Oct; 37(10):2003-17. PubMed ID: 19267201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial reactivity of block copolymers: understanding the amphiphile-to-hydrophile transition.
    Napoli A; Bermudez H; Hubbell JA
    Langmuir; 2005 Sep; 21(20):9149-53. PubMed ID: 16171345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured films of amphiphilic fluorinated block copolymers for fouling release application.
    Martinelli E; Agostini S; Galli G; Chiellini E; Glisenti A; Pettitt ME; Callow ME; Callow JA; Graf K; Bartels FW
    Langmuir; 2008 Nov; 24(22):13138-47. PubMed ID: 18928304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.
    Thompson KC; Rennie AR; King MD; Hardman SJ; Lucas CO; Pfrang C; Hughes BR; Hughes AV
    Langmuir; 2010 Nov; 26(22):17295-303. PubMed ID: 20883049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.
    Ariga K; Urakawa T; Michiue A; Kikuchi J
    Langmuir; 2004 Aug; 20(16):6762-9. PubMed ID: 15274583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.
    Thompson KC; Jones SH; Rennie AR; King MD; Ward AD; Hughes BR; Lucas CO; Campbell RA; Hughes AV
    Langmuir; 2013 Apr; 29(14):4594-602. PubMed ID: 23480170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block copolymer strands with internal microphase separation structure via self-assembly at the air-water interface.
    Price EW; Guo Y; Wang CW; Moffitt MG
    Langmuir; 2009 Jun; 25(11):6398-406. PubMed ID: 19466788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins.
    Stoenescu R; Graff A; Meier W
    Macromol Biosci; 2004 Oct; 4(10):930-5. PubMed ID: 15490442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic polymeric amphiphiles with cholesterol mesogen: adsorption and organization characteristics at the air/water interface from Langmuir film balance studies.
    Chandrasekar K; Vijay R; Baskar G
    Biomacromolecules; 2008 Apr; 9(4):1264-72. PubMed ID: 18307308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface.
    Dai S; Zhang X; Du Z; Huang Y; Dang H
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):21-8. PubMed ID: 15784323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixing alternating copolymers containing fluorenyl groups with phospholipids to obtain Langmuir and Langmuir-Blodgett films.
    Santos TC; Péres LO; Wang SH; Oliveira ON; Caseli L
    Langmuir; 2010 Apr; 26(8):5869-75. PubMed ID: 19921831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.