BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1729225)

  • 41. Cloning and sequencing of the structural gene for the small subunit of methylamine dehydrogenase from Methylobacterium extorquens AM1: evidence for two tryptophan residues involved in the active center.
    Chistoserdov AY; Tsygankov YD; Lidstrom ME
    Biochem Biophys Res Commun; 1990 Oct; 172(1):211-6. PubMed ID: 2121141
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.
    Fu Y; Beck DA; Lidstrom ME
    BMC Microbiol; 2016 Jul; 16(1):156. PubMed ID: 27435978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes.
    Han L; Reynolds KA
    J Bacteriol; 1997 Aug; 179(16):5157-64. PubMed ID: 9260959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase.
    Rumsby G; Cregeen DP
    Biochim Biophys Acta; 1999 Sep; 1446(3):383-8. PubMed ID: 10524214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.
    Schneider K; Skovran E; Vorholt JA
    J Bacteriol; 2012 Jun; 194(12):3144-55. PubMed ID: 22493020
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1.
    Nunn DN; Day D; Anthony C
    Biochem J; 1989 Jun; 260(3):857-62. PubMed ID: 2504152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic organization of methylamine utilization genes from Methylobacterium extorquens AM1.
    Chistoserdov AY; Tsygankov YD; Lidstrom ME
    J Bacteriol; 1991 Sep; 173(18):5901-8. PubMed ID: 1653226
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C compounds.
    Harder W; Quayle JR
    Biochem J; 1971 Mar; 121(5):763-9. PubMed ID: 5113490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathways leading to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate.
    Heptinstall J; Quayle JR
    Biochem J; 1970 Apr; 117(3):563-72. PubMed ID: 4315933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial growth on oxalate by a route not involving glyoxylate carboligase.
    Blackmore MA; Quayle JR
    Biochem J; 1970 Jun; 118(1):53-9. PubMed ID: 5472155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Study of a Pseudomonas mutant altered in methanol metabolism].
    Ratomahenina R; Arthaud JF; Cabane B; Galzy P
    Z Allg Mikrobiol; 1979; 19(9):637-41. PubMed ID: 397685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. L-malyl-coenzyme A/beta-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus.
    Meister M; Saum S; Alber BE; Fuchs G
    J Bacteriol; 2005 Feb; 187(4):1415-25. PubMed ID: 15687206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of hydroxypyruvate reductase from a serine-producing methylotroph, Hyphomicrobium methylovorum GM2.
    Izumi Y; Yoshida T; Kanzaki H; Toki S; Miyazaki SS; Yamada H
    Eur J Biochem; 1990 Jun; 190(2):279-84. PubMed ID: 2114287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth.
    Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E
    J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the Ethylmalonyl coenzyme A pathway in Methylobacterium extorquens AM1.
    Hu B; Lidstrom M
    J Bacteriol; 2012 Jun; 194(11):2802-8. PubMed ID: 22447902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200.
    Shen P; Chao H; Jiang C; Long Z; Wang C; Wu B
    Appl Biochem Biotechnol; 2010 Mar; 160(3):740-50. PubMed ID: 19266321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli.
    Nuñez MF; Pellicer MT; Badia J; Aguilar J; Baldoma L
    Biochem J; 2001 Mar; 354(Pt 3):707-15. PubMed ID: 11237876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic-acid-synthase structural gene.
    Valentin HE; Steinbüchel A
    Appl Microbiol Biotechnol; 1993 Jun; 39(3):309-17. PubMed ID: 7763712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of genes involved in the glyoxylate regeneration cycle in Methylobacterium extorquens AM1, including two new genes, meaC and meaD.
    Korotkova N; Lidstrom ME; Chistoserdova L
    J Bacteriol; 2005 Feb; 187(4):1523-6. PubMed ID: 15687219
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1.
    Kalyuzhnaya MG; Lidstrom ME
    J Bacteriol; 2003 Feb; 185(4):1229-35. PubMed ID: 12562792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.