These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1729225)

  • 81. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1.
    Nunn DN; Lidstrom ME
    J Bacteriol; 1986 May; 166(2):581-90. PubMed ID: 3009411
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route.
    Yang YM; Chen WJ; Yang J; Zhou YM; Hu B; Zhang M; Zhu LP; Wang GY; Yang S
    Microb Cell Fact; 2017 Oct; 16(1):179. PubMed ID: 29084554
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants.
    Hoover GJ; Jørgensen R; Rochon A; Bajwa VS; Merrill AR; Shelp BJ
    Biochim Biophys Acta; 2013 Dec; 1834(12):2663-71. PubMed ID: 24076009
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.
    Peyraud R; Kiefer P; Christen P; Massou S; Portais JC; Vorholt JA
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4846-51. PubMed ID: 19261854
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Erratum to "The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens" [FEMS Microbiol. Lett. 146 (1997) 31-38].
    Amaratunga K; Goodwin PM; O'Connor CD; Anthony C
    FEMS Microbiol Lett; 1997 May; 150(1):175-7. PubMed ID: 9163922
    [No Abstract]   [Full Text] [Related]  

  • 86. Nucleotide sequence of the mxcQ and mxcE genes, required for methanol dehydrogenase synthesis in Methylobacterium organophilum XX: a two-component regulatory system.
    Xu HH; Janka JJ; Viebahn M; Hanson RS
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2543-51. PubMed ID: 7582014
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation.
    Machlin SM; Tam PE; Bastien CA; Hanson RS
    J Bacteriol; 1988 Jan; 170(1):141-8. PubMed ID: 2826390
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Organization of methylamine utilization genes (mau) in 'Methylobacillus flagellatum ' KT and analysis of mau mutants.
    Gak ER; Tsygankov YD; Chistoserdov AY
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1827-1835. PubMed ID: 9202457
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mutation modifying the serine pathway in methylotrophic bacteria.
    Ratomahenina R; Galzy P
    Folia Microbiol (Praha); 1981; 26(3):179-83. PubMed ID: 6792008
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Glyoxylate reductase/hydroxypyruvate reductase regulates the free d-aspartate level in mammalian cells.
    Katane M; Matsuda S; Saitoh Y; Miyamoto T; Sekine M; Sakai-Kato K; Homma H
    J Cell Biochem; 2021 Nov; 122(11):1639-1652. PubMed ID: 34289161
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Malyl-CoA lyase provides glycine/glyoxylate synthesis in type I methanotrophs.
    But SY; Egorova SV; Khmelenina VN; Mustakhimov II
    FEMS Microbiol Lett; 2020 Jan; 367(24):. PubMed ID: 33296465
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43.
    Hagishita T; Yoshida T; Izumi Y; Mitsunaga T
    Biosci Biotechnol Biochem; 1996 Oct; 60(10):1604-7. PubMed ID: 8987658
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1.
    Nunn DN; Lidstrom ME
    J Bacteriol; 1986 May; 166(2):591-7. PubMed ID: 3009412
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Metabolism of Hydroxypyruvate in a Mutant of Barley Lacking NADH-Dependent Hydroxypyruvate Reductase, an Important Photorespiratory Enzyme Activity.
    Murray AJ; Blackwell RD; Lea PJ
    Plant Physiol; 1989 Sep; 91(1):395-400. PubMed ID: 16667032
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The enzymic reduction of glyoxylate and hydroxypyruvate in leaves of higher plants.
    Givan CV; Kleczkowski LA
    Plant Physiol; 1992 Oct; 100(2):552-6. PubMed ID: 16653027
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Extension of the model concerning linkage of genes coding for C-1 related functions in Methylobacterium organophilum.
    O'Connor ML
    Appl Environ Microbiol; 1981 Feb; 41(2):437-41. PubMed ID: 6786218
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues.
    Blake CC; Ghosh M; Harlos K; Avezoux A; Anthony C
    Nat Struct Biol; 1994 Feb; 1(2):102-5. PubMed ID: 7656012
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Organization of genes necessary for growth of the hydrogen-methanol autotroph Xanthobacter sp. strain H4-14 on hydrogen and carbon dioxide.
    Lehmicke LG; Lidstrom ME
    J Bacteriol; 1985 Jun; 162(3):1244-9. PubMed ID: 2987188
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions.
    Kiefer P; Buchhaupt M; Christen P; Kaup B; Schrader J; Vorholt JA
    PLoS One; 2009 Nov; 4(11):e7831. PubMed ID: 19915676
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Metabolism and decarboxylation of glycollate and serine in leaf peroxisomes.
    Walton NJ; Butt VS
    Planta; 1981 Nov; 153(3):225-31. PubMed ID: 24276825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.