BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 17292325)

  • 21. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC; Futerman AH; Prieto M
    Biophys J; 2009 Apr; 96(8):3210-22. PubMed ID: 19383465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX; Basañez G; Alonso A; Herrmann A; Goñi FM
    Biophys J; 2005 Jan; 88(1):348-59. PubMed ID: 15465865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha ; Sawatzki P; Kolter T; Bittman R; London E
    Biochim Biophys Acta; 2007 Sep; 1768(9):2205-12. PubMed ID: 17574203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disrupting membrane raft domains by alkylphospholipids.
    Gomide AB; Thomé CH; dos Santos GA; Ferreira GA; Faça VM; Rego EM; Greene LJ; Stabeli RG; Ciancaglini P; Itri R
    Biochim Biophys Acta; 2013 May; 1828(5):1384-9. PubMed ID: 23376656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes.
    López-Montero I; Rodriguez N; Cribier S; Pohl A; Vélez M; Devaux PF
    J Biol Chem; 2005 Jul; 280(27):25811-9. PubMed ID: 15883154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane restructuring via ceramide results in enhanced solute efflux.
    Montes LR; Ruiz-Argüello MB; Goñi FM; Alonso A
    J Biol Chem; 2002 Apr; 277(14):11788-94. PubMed ID: 11796726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2.
    Goswami R; Ahmed M; Kilkus J; Han T; Dawson SA; Dawson G
    J Neurosci Res; 2005 Jul; 81(2):208-17. PubMed ID: 15929065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation.
    Ayuyan AG; Cohen FS
    Biophys J; 2006 Sep; 91(6):2172-83. PubMed ID: 16815906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholesterol interactions with ceramide and sphingomyelin.
    García-Arribas AB; Alonso A; Goñi FM
    Chem Phys Lipids; 2016 Sep; 199():26-34. PubMed ID: 27132117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial regulation of bacterial sphingomyelinase activity.
    Jungner M; Ohvo H; Slotte JP
    Biochim Biophys Acta; 1997 Feb; 1344(3):230-40. PubMed ID: 9059513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sphingomyelinase and membrane sphingomyelin content: determinants ofProximal tubule cell susceptibility to injury.
    Zager RA; Burkhart KM; Johnson A
    J Am Soc Nephrol; 2000 May; 11(5):894-902. PubMed ID: 10770967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
    Khadka NK; Ho CS; Pan J
    Langmuir; 2015 Nov; 31(45):12417-25. PubMed ID: 26506226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical mapping of ceramide distribution in sphingomyelin-rich domains in monolayers.
    Popov J; Vobornik D; Coban O; Keating E; Miller D; Francis J; Petersen NO; Johnston LJ
    Langmuir; 2008 Dec; 24(23):13502-8. PubMed ID: 18973350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase.
    Boulgaropoulos B; Amenitsch H; Laggner P; Pabst G
    Biophys J; 2010 Jul; 99(2):499-506. PubMed ID: 20643068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes.
    Pullmannová P; Staňková K; Pospíšilová M; Skolová B; Zbytovská J; Vávrová K
    Biochim Biophys Acta; 2014 Aug; 1838(8):2115-26. PubMed ID: 24824073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.