These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17292520)

  • 1. Transfer of 90Sr to rice plants after its acute deposition onto flooded paddy soils.
    Choi YH; Kang HS; Jun I; Keum DK; Park HK; Choi GS; Lee H; Lee CW
    J Environ Radioact; 2007; 93(3):157-69. PubMed ID: 17292520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of 137Cs to rice plants from various paddy soils contaminated under flooded conditions at different growth stages.
    Choi YH; Lim KM; Park HG; Park DW; Kang HS; Lee HS
    J Environ Radioact; 2005; 80(1):45-58. PubMed ID: 15653186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport behavior and rice uptake of radiostrontium and radiocesium in flooded paddy soils contaminated in two contrasting ways.
    Choi YH; Lim KM; Jun I; Keum DK; Han MH; Kim IG
    Sci Total Environ; 2011 Dec; 412-413():248-56. PubMed ID: 22071438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and distribution of 90Sr and stable Sr in rice plants.
    Tsukada H; Takeda A; Takahashi T; Hasegawa H; Hisamatsu S; Inaba J
    J Environ Radioact; 2005; 81(2-3):221-31. PubMed ID: 15795036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant uptake and downward migration of 85Sr and 137Cs after their deposition on to flooded rice fields: lysimeter experiments with and without the addition of KCl and lime.
    Choi YH; Lim KM; Choi HJ; Choi GS; Lee HS; Lee CW
    J Environ Radioact; 2005; 78(1):35-49. PubMed ID: 15465178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients.
    Endo S; Kajimoto T; Shizuma K
    J Environ Radioact; 2013 Feb; 116():59-64. PubMed ID: 23103577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties.
    Keum DK; Lee H; Kang HS; Jun I; Choi YH; Lee CW
    J Environ Radioact; 2007; 92(1):1-15. PubMed ID: 17081663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of radiostrontium in soil: experimental study and modeling.
    Sysoeva AA; Konopleva IV; Sanzharova NI
    J Environ Radioact; 2005; 81(2-3):269-82. PubMed ID: 15795039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of radionuclides and stable elements from paddy soil to rice: a review.
    Uchida S; Tagami K; Shang ZR; Choi YH
    J Environ Radioact; 2009 Sep; 100(9):739-45. PubMed ID: 19027203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the simultaneous application of potassium and calcium on the soil-to-Chinese cabbage transfer of radiocesium and radiostrontium.
    Choi YH; Lim KM; Jun I; Keum DK; Lee CW
    J Environ Radioact; 2008 Dec; 99(12):1853-8. PubMed ID: 18945527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil-to-soybean transfer of (99)Tc and its underground distribution in differently contaminated upland soils.
    Choi YH; Lim KM; Jun I; Kim BH; Keum DK; Kim IG
    J Environ Radioact; 2014 Jun; 132():57-64. PubMed ID: 24556176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of the effects of agricultural practices designed to reduce 137Cs and 90Sr soil-plant transfer in meadows.
    Camps M; Rigol A; Hillier S; Vidal M; Rauret G
    Sci Total Environ; 2004 Oct; 332(1-3):23-38. PubMed ID: 15336888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of radiocobalt from soil to selected plant species in tropical environments.
    Rahman MM; Chand MM; Koddus A; Rahman MM; Zaman MA; Voigt G
    J Environ Radioact; 2008 Apr; 99(4):658-64. PubMed ID: 17977636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root uptake of radionuclides following their acute soil depositions during the growth of selected food crops.
    Choi YH; Lim KM; Jun I; Park DW; Keum DK; Lee CW
    J Environ Radioact; 2009 Sep; 100(9):746-51. PubMed ID: 19188006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term mobility of fallout 90Sr in ploughed soil, and 90Sr uptake by wheat grain.
    Yamaguchi N; Seki K; Komamura M; Kurishima K
    Sci Total Environ; 2007 Jan; 372(2-3):595-604. PubMed ID: 17123589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China.
    Lu JG; Huang Y; Li F; Wang L; Li S; Hsia Y
    J Environ Radioact; 2006; 90(2):89-99. PubMed ID: 16887243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effective and environmental half-life of 137Cs at Coral Islands at the former US nuclear test site.
    Robison WL; Conrado CL; Bogen KT; Stoker AC
    J Environ Radioact; 2003; 69(3):207-23. PubMed ID: 12832159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower variability of radionuclide activities in upland dairy products compared to soils and vegetation: implication for environmental survey.
    Pourcelot L; Steinmann P; Froidevaux P
    Chemosphere; 2007 Jan; 66(8):1571-9. PubMed ID: 17005236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiostrontium uptake by plants from different soil types in Kazakhstan.
    Savinkov A; Semioshkina N; Howard BJ; Voigt G
    Sci Total Environ; 2007 Feb; 373(1):324-33. PubMed ID: 17187845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of Cry1Ab protein from Bt transgenic rice in aerobic and flooded paddy soils.
    Wang H; Ye Q; Gan J; Wu L
    J Agric Food Chem; 2007 Mar; 55(5):1900-4. PubMed ID: 17288444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.