BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17292806)

  • 1. Xendorphin B1, a novel opioid-like peptide determined from a Xenopus laevis brain cDNA library, produces opioid antinociception after spinal administration in amphibians.
    Stevens CW; Tóth G; Borsodi A; Benyhe S
    Brain Res Bull; 2007 Mar; 71(6):628-32. PubMed ID: 17292806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of Xen-dorphin prohormone from Xenopus laevis: a new opioid-like prohormone distinct from proenkephalin and prodynorphin.
    Pattee P; Ilie AE; Benyhe S; Toth G; Borsodi A; Nagalla SR
    J Biol Chem; 2003 Dec; 278(52):53098-104. PubMed ID: 14525992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding studies of novel, non-mammalian enkephalins, structures predicted from frog and lungfish brain cDNA sequences.
    Bojnik E; Magyar A; Tóth G; Bajusz S; Borsodi A; Benyhe S
    Neuroscience; 2009 Jan; 158(2):867-74. PubMed ID: 18977279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nociceptin produces antinociception after spinal administration in amphibians.
    Stevens CW; Martin KK; Stahlheber BW
    Pharmacol Biochem Behav; 2009 Jan; 91(3):436-40. PubMed ID: 18804120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic and spinal administration of the mu opioid, remifentanil, produces antinociception in amphibians.
    Mohan S; Stevens CW
    Eur J Pharmacol; 2006 Mar; 534(1-3):89-94. PubMed ID: 16487509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective opioid agonist and antagonist competition for [3H]-naloxone binding in amphibian spinal cord.
    Newman LC; Wallace DR; Stevens CW
    Brain Res; 2000 Nov; 884(1--2):184-91. PubMed ID: 11082500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of spinal Met-enkephalin in nicotine-induced antinociception in mice.
    Kiguchi N; Maeda T; Tsuruga M; Yamamoto A; Yamamoto C; Ozaki M; Kishioka S
    Brain Res; 2008 Jan; 1189():70-7. PubMed ID: 18048009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal antinociceptive action of three representative opioid peptides in frogs.
    Stevens CW; Pezalla PD; Yaksh TL
    Brain Res; 1987 Jan; 402(1):201-3. PubMed ID: 2881600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats.
    Hamurtekin E; Bagdas D; Gurun MS
    Neurosci Lett; 2007 Jun; 420(2):116-21. PubMed ID: 17531379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antinociception and delta-1 opioid receptors in the rat spinal cord: studies with intrathecal 7-benzylidenenaltrexone.
    Hammond DL; Stewart PE; Littell L
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1317-24. PubMed ID: 7562504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal mechanisms of antinociceptive effect caused by oral administration of bis-selenide in mice.
    Jesse CR; Savegnago L; Nogueira CW
    Brain Res; 2008 Sep; 1231():25-33. PubMed ID: 18680735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative analgesic potency of mu, delta and kappa opioids after spinal administration in amphibians.
    Stevens CW
    J Pharmacol Exp Ther; 1996 Feb; 276(2):440-8. PubMed ID: 8632308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of proenkephalin in amphibians: cloning of a proenkephalin cDNA from the brain of the anuran amphibian, Spea multiplicatus.
    Lecaude S; Alrubaian J; Sollars C; Propper C; Danielson P; Dores RM
    Peptides; 2000 Mar; 21(3):339-44. PubMed ID: 10793214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RFamide-related peptides signal through the neuropeptide FF receptor and regulate pain-related responses in the rat.
    Pertovaara A; Ostergård M; Ankö ML; Lehti-Koivunen S; Brandt A; Hong W; Korpi ER; Panula P
    Neuroscience; 2005; 134(3):1023-32. PubMed ID: 16039797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opioid antinociception in amphibians.
    Stevens CW
    Brain Res Bull; 1988 Dec; 21(6):959-62. PubMed ID: 3066446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and bioinformatics of amphibian mu, delta, kappa, and nociceptin opioid receptors expressed in brain tissue: evidence for opioid receptor divergence in mammals.
    Stevens CW; Brasel CM; Mohan S
    Neurosci Lett; 2007 Jun; 419(3):189-94. PubMed ID: 17452077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: involvement of areas coexpressing CRF receptors and opioid peptides.
    Mousa SA; Bopaiah CP; Richter JF; Yamdeu RS; Schäfer M
    Neuropsychopharmacology; 2007 Dec; 32(12):2530-42. PubMed ID: 17375137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proposed mechanism of action for the antinociceptive effect of intrathecally administered calcium in the mouse.
    Welch SP; Stevens DL; Dewey WL
    J Pharmacol Exp Ther; 1992 Jan; 260(1):117-27. PubMed ID: 1346158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway.
    Roh DH; Kim HW; Yoon SY; Seo HS; Kwon YB; Kim KW; Han HJ; Beitz AJ; Lee JH
    J Neurosci Res; 2008 Dec; 86(16):3644-54. PubMed ID: 18655205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.