These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17292806)

  • 1. Xendorphin B1, a novel opioid-like peptide determined from a Xenopus laevis brain cDNA library, produces opioid antinociception after spinal administration in amphibians.
    Stevens CW; Tóth G; Borsodi A; Benyhe S
    Brain Res Bull; 2007 Mar; 71(6):628-32. PubMed ID: 17292806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of Xen-dorphin prohormone from Xenopus laevis: a new opioid-like prohormone distinct from proenkephalin and prodynorphin.
    Pattee P; Ilie AE; Benyhe S; Toth G; Borsodi A; Nagalla SR
    J Biol Chem; 2003 Dec; 278(52):53098-104. PubMed ID: 14525992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding studies of novel, non-mammalian enkephalins, structures predicted from frog and lungfish brain cDNA sequences.
    Bojnik E; Magyar A; Tóth G; Bajusz S; Borsodi A; Benyhe S
    Neuroscience; 2009 Jan; 158(2):867-74. PubMed ID: 18977279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nociceptin produces antinociception after spinal administration in amphibians.
    Stevens CW; Martin KK; Stahlheber BW
    Pharmacol Biochem Behav; 2009 Jan; 91(3):436-40. PubMed ID: 18804120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic and spinal administration of the mu opioid, remifentanil, produces antinociception in amphibians.
    Mohan S; Stevens CW
    Eur J Pharmacol; 2006 Mar; 534(1-3):89-94. PubMed ID: 16487509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective opioid agonist and antagonist competition for [3H]-naloxone binding in amphibian spinal cord.
    Newman LC; Wallace DR; Stevens CW
    Brain Res; 2000 Nov; 884(1--2):184-91. PubMed ID: 11082500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of spinal Met-enkephalin in nicotine-induced antinociception in mice.
    Kiguchi N; Maeda T; Tsuruga M; Yamamoto A; Yamamoto C; Ozaki M; Kishioka S
    Brain Res; 2008 Jan; 1189():70-7. PubMed ID: 18048009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal antinociceptive action of three representative opioid peptides in frogs.
    Stevens CW; Pezalla PD; Yaksh TL
    Brain Res; 1987 Jan; 402(1):201-3. PubMed ID: 2881600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats.
    Hamurtekin E; Bagdas D; Gurun MS
    Neurosci Lett; 2007 Jun; 420(2):116-21. PubMed ID: 17531379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antinociception and delta-1 opioid receptors in the rat spinal cord: studies with intrathecal 7-benzylidenenaltrexone.
    Hammond DL; Stewart PE; Littell L
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1317-24. PubMed ID: 7562504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal mechanisms of antinociceptive effect caused by oral administration of bis-selenide in mice.
    Jesse CR; Savegnago L; Nogueira CW
    Brain Res; 2008 Sep; 1231():25-33. PubMed ID: 18680735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative analgesic potency of mu, delta and kappa opioids after spinal administration in amphibians.
    Stevens CW
    J Pharmacol Exp Ther; 1996 Feb; 276(2):440-8. PubMed ID: 8632308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of proenkephalin in amphibians: cloning of a proenkephalin cDNA from the brain of the anuran amphibian, Spea multiplicatus.
    Lecaude S; Alrubaian J; Sollars C; Propper C; Danielson P; Dores RM
    Peptides; 2000 Mar; 21(3):339-44. PubMed ID: 10793214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RFamide-related peptides signal through the neuropeptide FF receptor and regulate pain-related responses in the rat.
    Pertovaara A; Ostergård M; Ankö ML; Lehti-Koivunen S; Brandt A; Hong W; Korpi ER; Panula P
    Neuroscience; 2005; 134(3):1023-32. PubMed ID: 16039797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opioid antinociception in amphibians.
    Stevens CW
    Brain Res Bull; 1988 Dec; 21(6):959-62. PubMed ID: 3066446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and bioinformatics of amphibian mu, delta, kappa, and nociceptin opioid receptors expressed in brain tissue: evidence for opioid receptor divergence in mammals.
    Stevens CW; Brasel CM; Mohan S
    Neurosci Lett; 2007 Jun; 419(3):189-94. PubMed ID: 17452077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: involvement of areas coexpressing CRF receptors and opioid peptides.
    Mousa SA; Bopaiah CP; Richter JF; Yamdeu RS; Schäfer M
    Neuropsychopharmacology; 2007 Dec; 32(12):2530-42. PubMed ID: 17375137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proposed mechanism of action for the antinociceptive effect of intrathecally administered calcium in the mouse.
    Welch SP; Stevens DL; Dewey WL
    J Pharmacol Exp Ther; 1992 Jan; 260(1):117-27. PubMed ID: 1346158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway.
    Roh DH; Kim HW; Yoon SY; Seo HS; Kwon YB; Kim KW; Han HJ; Beitz AJ; Lee JH
    J Neurosci Res; 2008 Dec; 86(16):3644-54. PubMed ID: 18655205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.