BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17292806)

  • 21. Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs.
    Lembo PM; Grazzini E; Groblewski T; O'Donnell D; Roy MO; Zhang J; Hoffert C; Cao J; Schmidt R; Pelletier M; Labarre M; Gosselin M; Fortin Y; Banville D; Shen SH; Ström P; Payza K; Dray A; Walker P; Ahmad S
    Nat Neurosci; 2002 Mar; 5(3):201-9. PubMed ID: 11850634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of gnathostome prodynorphin and proenkephalin: characterization of a shark proenkephalin and prodynorphin cDNAs.
    Komorowski LK; Lecaude SG; Westring CG; Danielson PB; Dores RM
    Gen Comp Endocrinol; 2012 Jul; 177(3):353-64. PubMed ID: 22210245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of spinal kappa opioid receptors in the antinociception produced by intrathecally administered corticotropin-releasing factor in mice.
    Song ZH; Takemori AE
    J Pharmacol Exp Ther; 1990 Aug; 254(2):363-8. PubMed ID: 2166788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opioid research in amphibians: an alternative pain model yielding insights on the evolution of opioid receptors.
    Stevens CW
    Brain Res Brain Res Rev; 2004 Oct; 46(2):204-15. PubMed ID: 15464208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analgesic potency of mu and kappa opioids after systemic administration in amphibians.
    Stevens CW; Klopp AJ; Facello JA
    J Pharmacol Exp Ther; 1994 Jun; 269(3):1086-93. PubMed ID: 8014851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates.
    Lee H; Ko MC
    Sci Rep; 2015 Jun; 5():11676. PubMed ID: 26119696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. cDNA cloning and sequence analysis of Xenopus laevis preproendothelin-1.
    Quan J; Uchide T; Takizawa S; Adur J; Nara E; Saida K
    J Cardiovasc Pharmacol; 2004 Nov; 44 Suppl 1():S256-9. PubMed ID: 15838294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain.
    Kononenko O; Bazov I; Watanabe H; Gerashchenko G; Dyachok O; Verbeek DS; Alkass K; Druid H; Andersson M; Mulder J; Svenningsen ÅF; Rajkowska G; Stockmeier CA; Krishtal O; Yakovleva T; Bakalkin G
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):246-255. PubMed ID: 27838394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The orphanin FQ system: an emerging target for the management of pain?
    Darland T; Grandy DK
    Br J Anaesth; 1998 Jul; 81(1):29-37. PubMed ID: 9771270
    [No Abstract]   [Full Text] [Related]  

  • 30. Testing and comparison of non-opioid analgesics in amphibians.
    Stevens CW; MacIver DN; Newman LC
    Contemp Top Lab Anim Sci; 2001 Jul; 40(4):23-7. PubMed ID: 11451391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of oxymorphazone in frogs: long lasting antinociception in vivo, and apparently irreversible binding in vitro.
    Benyhe S; Hoffmann G; Varga E; Hosztafi S; Toth G; Borsodi A; Wollemann M
    Life Sci; 1989; 44(24):1847-57. PubMed ID: 2472540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endogenous opioid system down-regulation during hibernation in amphibians.
    Stevens CW; Pezalla PD
    Brain Res; 1989 Aug; 494(2):227-31. PubMed ID: 2570621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin.
    Vanderah TW; Ossipov MH; Lai J; Malan TP; Porreca F
    Pain; 2001 May; 92(1-2):5-9. PubMed ID: 11323121
    [No Abstract]   [Full Text] [Related]  

  • 34. Thermal, mechanical and chemical peripheral sensation in amphibians: opioid and adrenergic effects.
    Willenbring S; Stevens CW
    Life Sci; 1996; 58(2):125-33. PubMed ID: 8606621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A human gene encoding morphine modulating peptides related to NPFF and FMRFamide.
    Perry SJ; Yi-Kung Huang E; Cronk D; Bagust J; Sharma R; Walker RJ; Wilson S; Burke JF
    FEBS Lett; 1997 Jun; 409(3):426-30. PubMed ID: 9224703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proinsulin cDNAs from the leopard frog, Rana pipiens: evolution of proinsulin processing.
    Irwin DM; Sivarajah P
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Mar; 125(3):405-10. PubMed ID: 10818274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presence of ranatensin-like and bombesin-like peptides in amphibian brains.
    Walsh JH; Lechago J; Wong HC; Rosenquist GL
    Regul Pept; 1982 Jan; 3(1):1-13. PubMed ID: 6172810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuropeptides and pain: neurosurgical implications.
    Sweet WH
    Clin Neurosurg; 1979; 26():657-72. PubMed ID: 94557
    [No Abstract]   [Full Text] [Related]  

  • 39. Identification of a novel frog RFamide and its effect on the latency of the tail-flick response of the newt.
    Kanetoh T; Sugikawa T; Sasaki I; Muneoka Y; Minakata H; Takabatake I; Fujimoto M
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Feb; 134(2):259-66. PubMed ID: 12600686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Species differences in amphibian olfactory neuron reactivity to a monoclonal antibody.
    Crowe MJ; Pixley SK
    Brain Res Bull; 1992 May; 28(5):785-8. PubMed ID: 1617462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.