BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 17293064)

  • 1. Hemolysis and antihemolysis induced by amino acid-based surfactants.
    Sánchez L; Martínez V; Infante MR; Mitjans M; Vinardell MP
    Toxicol Lett; 2007 Mar; 169(2):177-84. PubMed ID: 17293064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length.
    Nogueira DR; Mitjans M; Morán MC; Pérez L; Vinardell MP
    Amino Acids; 2012 Sep; 43(3):1203-15. PubMed ID: 22134583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of erythrocyte lipid bilayer by amino acid-based surfactants.
    Martínez V; Sánchez L; Busquets MA; Infante MR; Pilar Vinardell M; Mitjans M
    Amino Acids; 2007 Sep; 33(3):459-62. PubMed ID: 17086480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.
    Colomer A; Pinazo A; Manresa MA; Vinardell MP; Mitjans M; Infante MR; Pérez L
    J Med Chem; 2011 Feb; 54(4):989-1002. PubMed ID: 21229984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume expansion of erythrocytes is not the only mechanism responsible for the protection by arginine-based surfactants against hypotonic hemolysis.
    Fait ME; Hermet M; Vazquez R; Mate S; Daza Millone MA; Vela ME; Morcelle SR; Bakas L
    Colloids Surf B Biointerfaces; 2018 Nov; 171():134-141. PubMed ID: 30025375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of chemical modification of the surface of erythrocytes on their stability to the hemolytic action of sodium alkyl sulfates].
    Osipov NN; Zaslavskiĭ BIu; Rogozhin SV
    Biokhimiia; 1978 Sep; 43(9):1704-9. PubMed ID: 719073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of hemolysis by surfactants: effect of solution composition.
    Shalel S; Streichman S; Marmur A
    J Colloid Interface Sci; 2002 Aug; 252(1):66-76. PubMed ID: 16290763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity.
    Lanio ME; Alvarez C; Ochoa C; Ros U; Pazos F; Martínez D; Tejuca M; Eugenio LM; Casallanovo F; Dyszy FH; Schreier S; Lissi E
    Toxicon; 2007 Nov; 50(6):731-9. PubMed ID: 17681582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ascorbic acid based amphiphiles on human erythrocytes membrane.
    Rasia M; Spengler MI; Palma S; Manzo R; Lo Nostro P; Allemandi D
    Clin Hemorheol Microcirc; 2007; 36(2):133-40. PubMed ID: 17325437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants.
    Galembeck E; Alonso A; Meirelles NC
    Chem Biol Interact; 1998 May; 113(2):91-103. PubMed ID: 9717511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte hemolysis and shape changes induced by new lysine-derivate surfactants.
    Vives MA; Infante MR; Garcia E; Selve C; Maugras M; Vinardell MP
    Chem Biol Interact; 1999 Mar; 118(1):1-18. PubMed ID: 10227575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemolysis by surfactants--A review.
    Manaargadoo-Catin M; Ali-Cherif A; Pougnas JL; Perrin C
    Adv Colloid Interface Sci; 2016 Feb; 228():1-16. PubMed ID: 26687805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability.
    Sanchez L; Mitjans M; Infante MR; Vinardell MP
    Toxicol Lett; 2006 Feb; 161(1):53-60. PubMed ID: 16135402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of surface-active substances of biological membranes. III. Comparison of hemolytic activity of ionic and nonionic surfactants.
    Zaslavsky BY; Ossipov NN; Rogozhin SV
    Biochim Biophys Acta; 1978 Jun; 510(1):151-9. PubMed ID: 667031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolytic action of anionic surfactants of the diacyl lysine type.
    Vives MA; Macián M; Seguer J; Infante MR; Vinardell MP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 Sep; 118(1):71-4. PubMed ID: 9366037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane.
    Isomaa B; Hägerstrand H
    Cell Biochem Funct; 1988 Jul; 6(3):183-90. PubMed ID: 2842083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of hydroxychlorobiphenyls--polychlorinated biphenyl metabolites--with the human erythrocyte membrane.
    Miller TL
    J Environ Pathol Toxicol; 1978; 1(4):459-74. PubMed ID: 102715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence for a colloid-osmotic mechanism.
    Zaragoza A; Aranda FJ; Espuny MJ; Teruel JA; Marqués A; Manresa A; Ortiz A
    Langmuir; 2010 Jun; 26(11):8567-72. PubMed ID: 20146489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.