These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 1729310)

  • 1. Design and implementation of magnetization transfer pulse sequences for clinical use.
    Hajnal JV; Baudouin CJ; Oatridge A; Young IR; Bydder GM
    J Comput Assist Tomogr; 1992; 16(1):7-18. PubMed ID: 1729310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetization transfer magnetic resonance imaging: a clinical review.
    Mehta RC; Pike GB; Enzmann DR
    Top Magn Reson Imaging; 1996 Aug; 8(4):214-30. PubMed ID: 8870180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Multiplied, Added, Subtracted and/or FiTted Inversion Recovery (MASTIR) pulse sequences.
    Ma YJ; Fan S; Shao H; Du J; Szeverenyi NM; Young IR; Bydder GM
    Quant Imaging Med Surg; 2020 Jun; 10(6):1334-1369. PubMed ID: 32550142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New options for increasing the sensitivity, specificity and scope of synergistic contrast magnetic resonance imaging (scMRI) using Multiplied, Added, Subtracted and/or FiTted (MASTIR) pulse sequences.
    Ma YJ; Shao H; Fan S; Lu X; Du J; Young IR; Bydder GM
    Quant Imaging Med Surg; 2020 Oct; 10(10):2030-2065. PubMed ID: 33014733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast high-resolution brain imaging with balanced SSFP: Interpretation of quantitative magnetization transfer towards simple MTR.
    Garcia M; Gloor M; Radue EW; Stippich Ch; Wetzel SG; Scheffler K; Bieri O
    Neuroimage; 2012 Jan; 59(1):202-11. PubMed ID: 21820061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of magnetization transfer imaging for intracranial lesions of tuberous sclerosis.
    Jeong MG; Chung TS; Coe CJ; Jeon TJ; Kim DI; Joo AY
    J Comput Assist Tomogr; 1997; 21(1):8-14. PubMed ID: 9022761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images.
    Mirowitz SA; Apicella P; Reinus WR; Hammerman AM
    AJR Am J Roentgenol; 1994 Jan; 162(1):215-21. PubMed ID: 8273669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of magnetization transfer rate and native T1 relaxation time of the brain: correlation with magnetization transfer ratio measurements in patients with multiple sclerosis.
    Karampekios S; Papanikolaou N; Papadaki E; Maris T; Uffman K; Spilioti M; Plaitakis A; Gourtsoyiannis N
    Neuroradiology; 2005 Mar; 47(3):189-96. PubMed ID: 15711987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer.
    Tanttu JI; Sepponen RE; Lipton MJ; Kuusela T
    J Comput Assist Tomogr; 1992; 16(1):19-24. PubMed ID: 1729300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences.
    Hajnal JV; De Coene B; Lewis PD; Baudouin CJ; Cowan FM; Pennock JM; Young IR; Bydder GM
    J Comput Assist Tomogr; 1992; 16(4):506-13. PubMed ID: 1629405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging of musculoskeletal lesions: comparison of three fat-saturation pulse sequences.
    Pui MH; Goh PS; Choo HF; Fok EC
    Australas Radiol; 1997 May; 41(2):99-102. PubMed ID: 9153802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI.
    Helms G; Dathe H; Kallenberg K; Dechent P
    Magn Reson Med; 2008 Dec; 60(6):1396-407. PubMed ID: 19025906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized equation for describing the magnetization in spoiled gradient-echo imaging.
    Murase K
    Magn Reson Imaging; 2011 Jun; 29(5):723-30. PubMed ID: 21524871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous fat saturation and magnetization transfer contrast imaging with steady-state incoherent sequences.
    Zhao F; Nielsen JF; Swanson SD; Fessler JA; Noll DC
    Magn Reson Med; 2015 Sep; 74(3):739-46. PubMed ID: 25252173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of magnetization transfer contrast and fluid attenuated inversion recovery sequences in brain tuberculoma.
    Saxena S; Prakash M; Kumar S; Gupta RK
    Clin Radiol; 2005 Jul; 60(7):787-93. PubMed ID: 15978890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetization transfer imaging of normal and abnormal liver at 0.1 T.
    Loesberg AC; Kormano M; Lipton MJ
    Invest Radiol; 1993 Aug; 28(8):726-31. PubMed ID: 8376005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization.
    Hsu JJ; Lowe IJ
    J Magn Reson; 2004 Aug; 169(2):270-8. PubMed ID: 15261622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study.
    Sinnecker T; Mittelstaedt P; Dörr J; Pfueller CF; Harms L; Niendorf T; Paul F; Wuerfel J
    Arch Neurol; 2012 Jun; 69(6):739-45. PubMed ID: 22351849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses.
    Helms G; Piringer A
    NMR Biomed; 2005 Feb; 18(1):44-50. PubMed ID: 15455467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.