These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 17293230)

  • 21. [F18] FDG-PET/CT for manual or semiautomated GTV delineation of the primary tumor for radiation therapy planning in patients with esophageal cancer: is it useful?
    Walter F; Jell C; Zollner B; Andrae C; Gerum S; Ilhan H; Belka C; Niyazi M; Roeder F
    Strahlenther Onkol; 2021 Sep; 197(9):780-790. PubMed ID: 33104815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiation treatment planning using positron emission and computed tomography for lung and pharyngeal cancers: a multiple-threshold method for [(18)F]fluoro-2-deoxyglucose activity.
    Okubo M; Nishimura Y; Nakamatsu K; Okumura M; Shibata T; Kanamori S; Hanaoka K; Hosono M
    Int J Radiat Oncol Biol Phys; 2010 Jun; 77(2):350-6. PubMed ID: 20457349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interobserver agreement of qualitative analysis and tumor delineation of 18F-fluoromisonidazole and 3'-deoxy-3'-18F-fluorothymidine PET images in lung cancer.
    Thureau S; Chaumet-Riffaud P; Modzelewski R; Fernandez P; Tessonnier L; Vervueren L; Cachin F; Berriolo-Riedinger A; Olivier P; Kolesnikov-Gauthier H; Blagosklonov O; Bridji B; Devillers A; Collombier L; Courbon F; Gremillet E; Houzard C; Caignon JM; Roux J; Aide N; Brenot-Rossi I; Doyeux K; Dubray B; Vera P
    J Nucl Med; 2013 Sep; 54(9):1543-50. PubMed ID: 23918733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability of target and normal structure delineation using multimodality imaging for radiation therapy of pancreatic cancer.
    Dalah E; Moraru I; Paulson E; Erickson B; Li XA
    Int J Radiat Oncol Biol Phys; 2014 Jul; 89(3):633-40. PubMed ID: 24755533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography.
    Hanna GG; van Sörnsen de Koste JR; Dahele MR; Carson KJ; Haasbeek CJ; Migchielsen R; Hounsell AR; Senan S
    Clin Oncol (R Coll Radiol); 2012 Aug; 24(6):e71-80. PubMed ID: 22445302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.
    Guo Y; Li J; Wang W; Zhang Y; Wang J; Duan Y; Shang D; Fu Z
    Dis Esophagus; 2014; 27(8):744-50. PubMed ID: 24915760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer.
    Grills IS; Yan D; Black QC; Wong CY; Martinez AA; Kestin LL
    Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):709-19. PubMed ID: 17197120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.
    Hanna GG; McAleese J; Carson KJ; Stewart DP; Cosgrove VP; Eakin RL; Zatari A; Lynch T; Jarritt PH; Young VA; O'Sullivan JM; Hounsell AR
    Int J Radiat Oncol Biol Phys; 2010 May; 77(1):24-30. PubMed ID: 19665324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck.
    Burri RJ; Rangaswamy B; Kostakoglu L; Hoch B; Genden EM; Som PM; Kao J
    Int J Radiat Oncol Biol Phys; 2008 Jul; 71(3):682-8. PubMed ID: 18258379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interobserver variability among measurements of the maximum and mean standardized uptake values on (18)F-FDG PET/CT and measurements of tumor size on diagnostic CT in patients with pulmonary tumors.
    Huang YE; Chen CF; Huang YJ; Konda SD; Appelbaum DE; Pu Y
    Acta Radiol; 2010 Sep; 51(7):782-8. PubMed ID: 20707663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.
    Nestle U; Schaefer-Schuler A; Kremp S; Groeschel A; Hellwig D; Rübe C; Kirsch CM
    Eur J Nucl Med Mol Imaging; 2007 Apr; 34(4):453-62. PubMed ID: 17058078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?
    Hanna GG; Carson KJ; Lynch T; McAleese J; Cosgrove VP; Eakin RL; Stewart DP; Zatari A; O'Sullivan JM; Hounsell AR
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1040-51. PubMed ID: 20350798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment.
    Vahdat S; Oermann EK; Collins SP; Yu X; Abedalthagafi M; Debrito P; Suy S; Yousefi S; Gutierrez CJ; Chang T; Banovac F; Anderson ED; Esposito G; Collins BT
    J Hematol Oncol; 2010 Feb; 3():6. PubMed ID: 20132557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning.
    Aristophanous M; Berbeco RI; Killoran JH; Yap JT; Sher DJ; Allen AM; Larson E; Chen AB
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):e99-105. PubMed ID: 21377285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PET/CT for radiotherapy treatment planning in patients with soft tissue sarcomas.
    Karam I; Devic S; Hickeson M; Roberge D; Turcotte RE; Freeman CR
    Int J Radiat Oncol Biol Phys; 2009 Nov; 75(3):817-21. PubMed ID: 19386424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated functional image-guided radiation treatment planning for rectal cancer.
    Ciernik IF; Huser M; Burger C; Davis JB; Szekely G
    Int J Radiat Oncol Biol Phys; 2005 Jul; 62(3):893-900. PubMed ID: 15936575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased (18)F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent Radiation-Induced Lung Toxicity (RILT): a prospective pilot study.
    De Ruysscher D; Houben A; Aerts HJ; Dehing C; Wanders R; Ollers M; Dingemans AM; Hochstenbag M; Boersma L; Borger J; Dekker A; Lambin P
    Radiother Oncol; 2009 Jun; 91(3):415-20. PubMed ID: 19195730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis.
    Steenbakkers RJ; Duppen JC; Fitton I; Deurloo KE; Zijp LJ; Comans EF; Uitterhoeve AL; Rodrigus PT; Kramer GW; Bussink J; De Jaeger K; Belderbos JS; Nowak PJ; van Herk M; Rasch CR
    Int J Radiat Oncol Biol Phys; 2006 Feb; 64(2):435-48. PubMed ID: 16198064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.
    Schinagl DA; Vogel WV; Hoffmann AL; van Dalen JA; Oyen WJ; Kaanders JH
    Int J Radiat Oncol Biol Phys; 2007 Nov; 69(4):1282-9. PubMed ID: 17967318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer.
    Vanuytsel LJ; Vansteenkiste JF; Stroobants SG; De Leyn PR; De Wever W; Verbeken EK; Gatti GG; Huyskens DP; Kutcher GJ
    Radiother Oncol; 2000 Jun; 55(3):317-24. PubMed ID: 10869746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.