BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17293426)

  • 1. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum.
    Engels V; Wendisch VF
    J Bacteriol; 2007 Apr; 189(8):2955-66. PubMed ID: 17293426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum.
    Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J
    BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.
    Engels V; Lindner SN; Wendisch VF
    J Bacteriol; 2008 Dec; 190(24):8033-44. PubMed ID: 18849435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum.
    Tanaka Y; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):309-18. PubMed ID: 18183389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R.
    Tanaka Y; Okai N; Teramoto H; Inui M; Yukawa H
    Microbiology (Reading); 2008 Jan; 154(Pt 1):264-274. PubMed ID: 18174145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
    Henrich A; Kuhlmann N; Eck AW; Krämer R; Seibold GM
    J Bacteriol; 2013 Jun; 195(11):2573-84. PubMed ID: 23543710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum.
    Engels V; Georgi T; Wendisch VF
    FEMS Microbiol Lett; 2008 Dec; 289(1):80-9. PubMed ID: 19054097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS
    Xu J; Zhang J; Liu D; Zhang W
    Can J Microbiol; 2016 Dec; 62(12):983-992. PubMed ID: 27718589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum.
    Toyoda K; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 May; 83(2):315-27. PubMed ID: 19221735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR.
    Toyoda K; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):291-301. PubMed ID: 18791709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of regulatory interactions among global regulators GlxR, SugR, and RamA in expression of ramA in Corynebacterium glutamicum.
    Toyoda K; Teramoto H; Gunji W; Inui M; Yukawa H
    J Bacteriol; 2013 Apr; 195(8):1718-26. PubMed ID: 23396909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
    Wang C; Cai H; Zhou Z; Zhang K; Chen Z; Chen Y; Wan H; Ouyang P
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1249-58. PubMed ID: 24859809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the regulation of ethanol catabolic genes and ptsG using a glxR and adenylate cyclase gene (cyaB) deletion mutants of Corynebacterium glutamicum ATCC 13032.
    Subhadra B; Lee JK
    J Microbiol Biotechnol; 2013 Dec; 23(12):1683-90. PubMed ID: 24150494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of ptsG, the gene for the major glucose PTS transporter in Escherichia coli, is repressed by Mlc and induced by growth on glucose.
    Plumbridge J
    Mol Microbiol; 1998 Aug; 29(4):1053-63. PubMed ID: 9767573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
    Dietrich C; Nato A; Bost B; Le Maréchal P; Guyonvarch A
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1360-1375. PubMed ID: 19332837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.
    Sasaki M; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
    Lindner SN; Petrov DP; Hagmann CT; Henrich A; Krämer R; Eikmanns BJ; Wendisch VF; Seibold GM
    Appl Environ Microbiol; 2013 Apr; 79(8):2588-95. PubMed ID: 23396334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases.
    Martins GB; Giacomelli G; Goldbeck O; Seibold GM; Bramkamp M
    Mol Microbiol; 2019 May; 111(5):1335-1354. PubMed ID: 30748039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2.
    Frunzke J; Engels V; Hasenbein S; Gätgens C; Bott M
    Mol Microbiol; 2008 Jan; 67(2):305-22. PubMed ID: 18047570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.