BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17293530)

  • 1. An NAD(P)H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism.
    Mihasan M; Chiribau CB; Friedrich T; Artenie V; Brandsch R
    Appl Environ Microbiol; 2007 Apr; 73(8):2479-85. PubMed ID: 17293530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of PmfR, the transcriptional activator of the pAO1-borne purU-mabO-folD operon of Arthrobacter nicotinovorans.
    Chiribau CB; Sandu C; Igloi GL; Brandsch R
    J Bacteriol; 2005 May; 187(9):3062-70. PubMed ID: 15838033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reductive metabolism of diaziquone (AZQ) in the S9 fraction of MCF-7 cells: free radical formation and NAD(P)H: quinone-acceptor oxidoreductase (DT-diaphorase) activity.
    Fisher GR; Gutierrez PL
    Free Radic Biol Med; 1991; 10(6):359-70. PubMed ID: 1654286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614.
    Ganas P; Sachelaru P; Mihasan M; Igloi GL; Brandsch R
    Arch Microbiol; 2008 May; 189(5):511-7. PubMed ID: 18071673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3.
    Zhang JJ; Liu H; Xiao Y; Zhang XE; Zhou NY
    J Bacteriol; 2009 Apr; 191(8):2703-10. PubMed ID: 19218392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis.
    Brock BJ; Gold MH
    Arch Biochem Biophys; 1996 Jul; 331(1):31-40. PubMed ID: 8660680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD(P)H:(Quinone-Acceptor) Oxidoreductase of Tobacco Leaves Is a Flavin Mononucleotide-Containing Flavoenzyme.
    Sparla F; Tedeschi G; Trost P
    Plant Physiol; 1996 Sep; 112(1):249-258. PubMed ID: 12226388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of 2,6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway.
    Treiber N; Schulz GE
    J Mol Biol; 2008 May; 379(1):94-104. PubMed ID: 18440023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in research on DT-diaphorase--catalytic properties, regulation of activity and significance in the detoxication of foreign compounds.
    Horie S
    Kitasato Arch Exp Med; 1990 Apr; 63(1):11-30. PubMed ID: 2125671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel gamma-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1.
    Chiribau CB; Sandu C; Fraaije M; Schiltz E; Brandsch R
    Eur J Biochem; 2004 Dec; 271(23-24):4677-84. PubMed ID: 15606755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A soil bacterial catabolic pathway on the move: Transfer of nicotine catabolic genes between
    Brandsch R; Mihasan M
    J Biosci; 2020; 45():. PubMed ID: 32345784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiology and biochemistry of nicotine degradation.
    Brandsch R
    Appl Microbiol Biotechnol; 2006 Jan; 69(5):493-8. PubMed ID: 16333621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Final steps in the catabolism of nicotine.
    Chiribau CB; Mihasan M; Ganas P; Igloi GL; Artenie V; Brandsch R
    FEBS J; 2006 Apr; 273(7):1528-36. PubMed ID: 16689938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans.
    Ganas P; Mihasan M; Igloi GL; Brandsch R
    Microbiology (Reading); 2007 May; 153(Pt 5):1546-1555. PubMed ID: 17464069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, Mechanistic, and Functional Insights into an
    Wang L; Mu X; Li W; Xu Q; Xu P; Zhang L; Zhang Y; Wu G
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299660
    [No Abstract]   [Full Text] [Related]  

  • 18. Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase.
    Baitsch D; Sandu C; Brandsch R; Igloi GL
    J Bacteriol; 2001 Sep; 183(18):5262-7. PubMed ID: 11514508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular quinone reduction in Sporotrichum pulverulentum by a NAD(P)H:quinone oxidoreductase: possible role in vanillic acid catabolism.
    Buswell JA; Hamp S; Eriksson KE
    FEBS Lett; 1979 Dec; 108(1):229-32. PubMed ID: 520550
    [No Abstract]   [Full Text] [Related]  

  • 20. Riboflavin-dependent expression of flavoenzymes of the nicotine regulon of Arthrobacter oxidans.
    Brandsch R; Bichler V
    Biochem J; 1990 Sep; 270(3):673-8. PubMed ID: 1700696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.