These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17294103)

  • 1. Three types of inhibitory miniature potentials in frog spinal cord motoneurons: possible GABA and glycine cotransmission.
    Polina YA; Amakhin DV; Kozhanov VM; Kurchavyi GG; Veselkin NP
    Neurosci Behav Physiol; 2007 Mar; 37(3):271-6. PubMed ID: 17294103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Three types of miniature inhibitory potentiaes in the frog spinal cord motoneurons: the possibility of GABA and glycine co-release].
    Polina IuA; Amakhin DV; Kozhakov VM; Kurchavyĭ GG; Veselkin NP
    Ross Fiziol Zh Im I M Sechenova; 2006 Jan; 92(1):18-26. PubMed ID: 16613054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons.
    Schneider SP; Fyffe RE
    J Neurophysiol; 1992 Aug; 68(2):397-406. PubMed ID: 1326603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow inhibitory potentials in the teleost Mauthner cell.
    Hatta K; Ankri N; Faber DS; Korn H
    Neuroscience; 2001; 103(2):561-79. PubMed ID: 11246169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corelease of GABA/glycine in lamina-X of the spinal cord of neonatal rats.
    Seddik R; Schlichter R; Trouslard J
    Neuroreport; 2007 Jul; 18(10):1025-9. PubMed ID: 17558289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of spinal or hypoglossal motoneurons of the newborn rat by glycine or GABA.
    Marchetti C; Pagnotta S; Donato R; Nistri A
    Eur J Neurosci; 2002 Mar; 15(6):975-83. PubMed ID: 11918657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons.
    Ziskind-Conhaim L; Gao BX; Hinckley C
    J Neurophysiol; 2003 Feb; 89(2):806-13. PubMed ID: 12574458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P; Rodeau JL; Schlichter R
    Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord.
    Oz M; Yang KH; O'donovan MJ; Renaud LP
    J Neurophysiol; 2005 Aug; 94(2):1405-12. PubMed ID: 16061493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The contribution of glycine and GABA(A) receptors to generation of the inhibitory postsynaptic potentials in the frog spinal cord motoneurones].
    Kurchavyĭ GG; Kalinina NI; Veselkin NP
    Ross Fiziol Zh Im I M Sechenova; 2010 Jun; 96(6):553-65. PubMed ID: 20795472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corelease of two fast neurotransmitters at a central synapse.
    Jonas P; Bischofberger J; Sandkühler J
    Science; 1998 Jul; 281(5375):419-24. PubMed ID: 9665886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons.
    Rousseau F; Aubrey KR; Supplisson S
    J Neurosci; 2008 Sep; 28(39):9755-68. PubMed ID: 18815261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons.
    Núñez-Abades PA; Pattillo JM; Hodgson TM; Cameron WE
    J Neurophysiol; 2000 Nov; 84(5):2317-29. PubMed ID: 11067975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modulate release of inhibitory amino acids in rat spinal cord dorsal horn.
    Engelman HS; Anderson RL; Daniele C; Macdermott AB
    Neuroscience; 2006 May; 139(2):539-53. PubMed ID: 16472927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory postsynaptic actions of taurine, GABA and other amino acids on motoneurons of the isolated frog spinal cord.
    Sonnhof U; Grafe P; Krumnikl J; Linder M; Schindler L
    Brain Res; 1975 Dec; 100(2):327-41. PubMed ID: 128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat.
    Matsumoto N; Kumamoto E; Furue H; Yoshimura M
    J Neurophysiol; 2003 Jan; 89(1):257-64. PubMed ID: 12522177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABA(B) receptors are the first target of released GABA at lamina I inhibitory synapses in the adult rat spinal cord.
    Chéry N; De Koninck Y
    J Neurophysiol; 2000 Aug; 84(2):1006-11. PubMed ID: 10938323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.