These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 1729468)
21. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326 [TBL] [Abstract][Full Text] [Related]
22. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. Nichols BL; Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Butte NF; Marini J; Jahoor F; Sterchi EE J Nutr; 2009 Apr; 139(4):684-90. PubMed ID: 19193815 [TBL] [Abstract][Full Text] [Related]
23. Interaction between the α-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Tannous S; Stellbrinck T; Hoter A; Naim HY Front Mol Biosci; 2023; 10():1160860. PubMed ID: 36968271 [TBL] [Abstract][Full Text] [Related]
24. Starch source influences dietary glucose generation at the mucosal α-glucosidase level. Lin AH; Lee BH; Nichols BL; Quezada-Calvillo R; Rose DR; Naim HY; Hamaker BR J Biol Chem; 2012 Oct; 287(44):36917-21. PubMed ID: 22988246 [TBL] [Abstract][Full Text] [Related]
25. Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans. Fernández CI; Wiley AS Am J Phys Anthropol; 2017 Aug; 163(4):645-657. PubMed ID: 28568243 [TBL] [Abstract][Full Text] [Related]
26. Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit. Quezada-Calvillo R; Sim L; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Robayo-Torres CC; Rose DR; Nichols BL J Nutr; 2008 Apr; 138(4):685-92. PubMed ID: 18356321 [TBL] [Abstract][Full Text] [Related]
27. Maltase Has Most Versatile α-Hydrolytic Activity Among the Mucosal α-Glucosidases of the Small Intestine. Lee BH; Hamaker BR J Pediatr Gastroenterol Nutr; 2018 Jun; 66 Suppl 3():S7-S10. PubMed ID: 29762368 [TBL] [Abstract][Full Text] [Related]
28. Duodenal Infusions of Starch with Casein or Glutamic Acid Influence Pancreatic and Small Intestinal Carbohydrase Activities in Cattle. Trotta RJ; Sitorski LG; Acharya S; Brake DW; Swanson KC J Nutr; 2020 Apr; 150(4):784-791. PubMed ID: 31875476 [TBL] [Abstract][Full Text] [Related]
29. Phylogenetic analysis reveals key residues in substrate hydrolysis in the isomaltase domain of sucrase-isomaltase and its role in starch digestion. Chaudet MM; Amiri M; Marth N; Naim HY; Rose DR Biochim Biophys Acta Gen Subj; 2019 Sep; 1863(9):1410-1416. PubMed ID: 31254546 [TBL] [Abstract][Full Text] [Related]
30. Investigations of the structures and inhibitory properties of intestinal maltase glucoamylase and sucrase isomaltase. Jones K; Eskandari R; Naim HY; Pinto BM; Rose DR J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S20-4. PubMed ID: 23103645 [No Abstract] [Full Text] [Related]
31. A mechanistic model of small intestinal starch digestion and glucose uptake in the cow. Mills JAN; France J; Ellis JL; Crompton LA; Bannink A; Hanigan MD; Dijkstra J J Dairy Sci; 2017 Jun; 100(6):4650-4670. PubMed ID: 28365112 [TBL] [Abstract][Full Text] [Related]
32. Carbohydrate digestion and absorption in the equine small intestine. Roberts MC J S Afr Vet Assoc; 1975 Mar; 46(1):19-27. PubMed ID: 1100825 [TBL] [Abstract][Full Text] [Related]
33. Dietary influences on carbohydrases and small intestinal starch hydrolysis capacity in ruminants. Harmon DL J Nutr; 1992 Jan; 122(1):203-10. PubMed ID: 1370326 [TBL] [Abstract][Full Text] [Related]
34. Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. Lee CK; Le QT; Kim YH; Shim JH; Lee SJ; Park JH; Lee KP; Song SH; Auh JH; Lee SJ; Park KH J Agric Food Chem; 2008 Jan; 56(1):126-31. PubMed ID: 18072737 [TBL] [Abstract][Full Text] [Related]
35. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462 [TBL] [Abstract][Full Text] [Related]
36. The membrane-bound intestinal enzymes of waxwings and thrushes: adaptive and functional implications of patterns of enzyme activity. Witmer MC; Martínez del Rio C Physiol Biochem Zool; 2001; 74(4):584-93. PubMed ID: 11436143 [TBL] [Abstract][Full Text] [Related]
37. Starch digestion in fowl. Moran ET Poult Sci; 1982 Jul; 61(7):1257-67. PubMed ID: 7134106 [TBL] [Abstract][Full Text] [Related]
38. [Current concepts of digestion and absorption of carbohydrates]. Luz Sdos S; de Campos PL; Ribeiro SM; Tirapegui J Arq Gastroenterol; 1997; 34(3):175-85. PubMed ID: 9611296 [TBL] [Abstract][Full Text] [Related]
39. Starch degradation by the mould Trichoderma viride. I. The mechanism of starch degradation. Schellart JA; Visser FM; Zandstra T; Middelhoven WJ Antonie Van Leeuwenhoek; 1976; 42(3):229-38. PubMed ID: 10832 [TBL] [Abstract][Full Text] [Related]
40. Digestion and absorption of carbohydrates--from molecules and membranes to humans. Levin RJ Am J Clin Nutr; 1994 Mar; 59(3 Suppl):690S-698S. PubMed ID: 8116552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]