These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 17295231)
1. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. Dellinger JG; Cesarano J; Jamison RD J Biomed Mater Res A; 2007 Aug; 82(2):383-94. PubMed ID: 17295231 [TBL] [Abstract][Full Text] [Related]
2. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds. Dellinger JG; Wojtowicz AM; Jamison RD J Biomed Mater Res A; 2006 Jun; 77(3):563-71. PubMed ID: 16498598 [TBL] [Abstract][Full Text] [Related]
3. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Michna S; Wu W; Lewis JA Biomaterials; 2005 Oct; 26(28):5632-9. PubMed ID: 15878368 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404 [TBL] [Abstract][Full Text] [Related]
5. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. Teixeira S; Fernandes H; Leusink A; van Blitterswijk C; Ferraz MP; Monteiro FJ; de Boer J J Biomed Mater Res A; 2010 May; 93(2):567-75. PubMed ID: 19591232 [TBL] [Abstract][Full Text] [Related]
6. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
7. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. Simon JL; Michna S; Lewis JA; Rekow ED; Thompson VP; Smay JE; Yampolsky A; Parsons JR; Ricci JL J Biomed Mater Res A; 2007 Dec; 83(3):747-58. PubMed ID: 17559109 [TBL] [Abstract][Full Text] [Related]
8. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Miranda P; Saiz E; Gryn K; Tomsia AP Acta Biomater; 2006 Jul; 2(4):457-66. PubMed ID: 16723287 [TBL] [Abstract][Full Text] [Related]
9. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
10. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509 [TBL] [Abstract][Full Text] [Related]
11. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
12. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
13. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Malmström J; Adolfsson E; Arvidsson A; Thomsen P Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331 [TBL] [Abstract][Full Text] [Related]
14. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Fu Q; Rahaman MN; Dogan F; Bal BS Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
17. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold. Peng Q; Jiang F; Huang P; Zhou S; Weng J; Bao C; Zhang C; Yu H J Biomed Mater Res A; 2010 Jun; 93(3):920-9. PubMed ID: 19708076 [TBL] [Abstract][Full Text] [Related]
18. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Johnson KT; Dean DR; Nyairo E Acta Biomater; 2009 Jan; 5(1):305-15. PubMed ID: 18778977 [TBL] [Abstract][Full Text] [Related]
20. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]