These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 17295231)
21. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route. Oliveira JM; Costa SA; Leonor IB; Malafaya PB; Mano JF; Reis RL J Biomed Mater Res A; 2009 Feb; 88(2):470-80. PubMed ID: 18306322 [TBL] [Abstract][Full Text] [Related]
22. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Raucci MG; D'Antò V; Guarino V; Sardella E; Zeppetelli S; Favia P; Ambrosio L Acta Biomater; 2010 Oct; 6(10):4090-9. PubMed ID: 20417736 [TBL] [Abstract][Full Text] [Related]
23. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. Dellinger JG; Eurell JA; Stewart M; Jamison RD J Biomed Mater Res A; 2006 Feb; 76(2):366-76. PubMed ID: 16270335 [TBL] [Abstract][Full Text] [Related]
24. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
25. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Deville S; Saiz E; Tomsia AP Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254 [TBL] [Abstract][Full Text] [Related]
26. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396 [TBL] [Abstract][Full Text] [Related]
27. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Chim H; Hutmacher DW; Chou AM; Oliveira AL; Reis RL; Lim TC; Schantz JT Int J Oral Maxillofac Surg; 2006 Oct; 35(10):928-34. PubMed ID: 16762529 [TBL] [Abstract][Full Text] [Related]
28. [Study on hydroxyapatite porous scaffold bonded by phosphates and its biocompatibility]. Dong Y; Zhang Q; Liu B; Guo Z; Lin P; Pu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):985-9. PubMed ID: 16294736 [TBL] [Abstract][Full Text] [Related]
29. Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering. Muthutantri AI; Huang J; Edirisinghe MJ; Bretcanu O; Boccaccini AR Biomed Mater; 2008 Jun; 3(2):025009. PubMed ID: 18458366 [TBL] [Abstract][Full Text] [Related]
30. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. Wilson CE; de Bruijn JD; van Blitterswijk CA; Verbout AJ; Dhert WJ J Biomed Mater Res A; 2004 Jan; 68(1):123-32. PubMed ID: 14661257 [TBL] [Abstract][Full Text] [Related]
31. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method. Padilla S; Sánchez-Salcedo S; Vallet-Regí M J Biomed Mater Res A; 2005 Oct; 75(1):63-72. PubMed ID: 16088904 [TBL] [Abstract][Full Text] [Related]
32. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. Cushnie EK; Khan YM; Laurencin CT J Biomed Mater Res A; 2008 Jan; 84(1):54-62. PubMed ID: 17600320 [TBL] [Abstract][Full Text] [Related]
33. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Landi E; Valentini F; Tampieri A Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459 [TBL] [Abstract][Full Text] [Related]
34. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
35. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
36. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
38. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering. Chen JD; Wang Y; Chen X J Biomater Sci Polym Ed; 2009; 20(11):1555-65. PubMed ID: 19619396 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
40. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]