These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 17295410)
41. Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Zhao D; Cai L; Wu J; Li M; Liu H; Han J; Zhou J; Xiang H Appl Microbiol Biotechnol; 2013 Apr; 97(7):3027-36. PubMed ID: 23015099 [TBL] [Abstract][Full Text] [Related]
42. Microbial production of 4-hydroxybutyrate, poly-4-hydroxybutyrate, and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by recombinant microorganisms. Zhang L; Shi ZY; Wu Q; Chen GQ Appl Microbiol Biotechnol; 2009 Oct; 84(5):909-16. PubMed ID: 19434404 [TBL] [Abstract][Full Text] [Related]
43. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Venkateswar Reddy M; Mawatari Y; Yajima Y; Satoh K; Venkata Mohan S; Chang YC Bioresour Technol; 2016 Sep; 215():155-162. PubMed ID: 26995321 [TBL] [Abstract][Full Text] [Related]
44. Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Venkateswar Reddy M; Mawatari Y; Onodera R; Nakamura Y; Yajima Y; Chang YC Bioresour Technol; 2017 Jun; 234():99-105. PubMed ID: 28319778 [TBL] [Abstract][Full Text] [Related]
45. Biosynthesis and Characterization of Polyhydroxyalkanoates with Controlled Composition and Microstructure. Ferre-Guell A; Winterburn J Biomacromolecules; 2018 Mar; 19(3):996-1005. PubMed ID: 29360344 [TBL] [Abstract][Full Text] [Related]
46. A patatin-like protein associated with the polyhydroxyalkanoate (PHA) granules of Haloferax mediterranei acts as an efficient depolymerase in the degradation of native PHA. Liu G; Hou J; Cai S; Zhao D; Cai L; Han J; Zhou J; Xiang H Appl Environ Microbiol; 2015 May; 81(9):3029-38. PubMed ID: 25710370 [TBL] [Abstract][Full Text] [Related]
47. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers. Ashby RD; Solaiman DK; Strahan GD; Zhu C; Tappel RC; Nomura CT Bioresour Technol; 2012 Aug; 118():272-80. PubMed ID: 22705534 [TBL] [Abstract][Full Text] [Related]
48. Biosynthesis and native granule characteristics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Delftia acidovorans. Loo CY; Sudesh K Int J Biol Macromol; 2007 Apr; 40(5):466-71. PubMed ID: 17207850 [TBL] [Abstract][Full Text] [Related]
49. Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids. Ramsay BA; Lomaliza K; Chavarie C; Dubé B; Bataille P; Ramsay JA Appl Environ Microbiol; 1990 Jul; 56(7):2093-8. PubMed ID: 2117877 [TBL] [Abstract][Full Text] [Related]
50. Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. Van-Thuoc D; Quillaguamán J; Mamo G; Mattiasson B J Appl Microbiol; 2008 Feb; 104(2):420-8. PubMed ID: 17887984 [TBL] [Abstract][Full Text] [Related]
51. Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Zhang HF; Ma L; Wang ZH; Chen GQ Biotechnol Bioeng; 2009 Oct; 104(3):582-9. PubMed ID: 19517520 [TBL] [Abstract][Full Text] [Related]
52. Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. Valappil SP; Peiris D; Langley GJ; Herniman JM; Boccaccini AR; Bucke C; Roy I J Biotechnol; 2007 Jan; 127(3):475-87. PubMed ID: 16956686 [TBL] [Abstract][Full Text] [Related]
53. Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition. Dai Y; Lambert L; Yuan Z; Keller J J Biotechnol; 2008 Mar; 134(1-2):137-45. PubMed ID: 18313162 [TBL] [Abstract][Full Text] [Related]
54. Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Kang HO; Chung CW; Kim HW; Kim YB; Rhee YH Antonie Van Leeuwenhoek; 2001 Oct; 80(2):185-91. PubMed ID: 11759051 [TBL] [Abstract][Full Text] [Related]
55. Dispersion optimization to enhance PHB production in fed-batch cultures of Ralstonia eutropha. Patnaik PR Bioresour Technol; 2006 Nov; 97(16):1994-2001. PubMed ID: 16289872 [TBL] [Abstract][Full Text] [Related]
56. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Lee WH; Loo CY; Nomura CT; Sudesh K Bioresour Technol; 2008 Oct; 99(15):6844-51. PubMed ID: 18325764 [TBL] [Abstract][Full Text] [Related]
57. Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Alonso S; Rendueles M; Díaz M Bioresour Technol; 2013 Apr; 134():134-42. PubMed ID: 23500570 [TBL] [Abstract][Full Text] [Related]
58. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Raho S; Carofiglio VE; Montemurro M; Miceli V; Centrone D; Stufano P; Schioppa M; Pontonio E; Rizzello CG Foods; 2020 Oct; 9(10):. PubMed ID: 33066448 [TBL] [Abstract][Full Text] [Related]
59. Microbial synthesis of poly(3-hydroxyalkanoates) by Pseudomonas aeruginosa from fatty acids: identification of higher monomer units and structural characterization. Barbuzzi T; Giuffrida M; Impallomeni G; Carnazza S; Ferreri A; Guglielmino SP; Ballistreri A Biomacromolecules; 2004; 5(6):2469-78. PubMed ID: 15530065 [TBL] [Abstract][Full Text] [Related]
60. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Valappil SP; Misra SK; Boccaccini AR; Keshavarz T; Bucke C; Roy I J Biotechnol; 2007 Nov; 132(3):251-8. PubMed ID: 17532079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]