These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17295483)

  • 1. Methyl chloride production from methane over lanthanum-based catalysts.
    Podkolzin SG; Stangland EE; Jones ME; Peringer E; Lercher JA
    J Am Chem Soc; 2007 Mar; 129(9):2569-76. PubMed ID: 17295483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative activity of La2O3, LaOCl, and LaCl3 in reaction with CCl4 studied with infrared spectroscopy and density functional theory calculations.
    Podkolzin SG; Manoilova OV; Weckhuysen BM
    J Phys Chem B; 2005 Jun; 109(23):11634-42. PubMed ID: 16852428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides.
    Hereijgers BP; Weckhuysen BM
    ChemSusChem; 2009; 2(8):743-8. PubMed ID: 19588474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface properties and catalytic performance of La(1-x)Sr(x)FeO(3) perovskite-type oxides for methane combustion.
    Wang CH; Chen CL; Weng HS
    Chemosphere; 2004 Dec; 57(9):1131-8. PubMed ID: 15504472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scientific basis for process and catalyst design in the selective oxidation of methane to formaldehyde.
    Arena F; Parmaliana A
    Acc Chem Res; 2003 Dec; 36(12):867-75. PubMed ID: 14674778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature destruction of carbon tetrachloride over lanthanide oxide-based catalysts: from destructive adsorption to a catalytic reaction cycle.
    Van der Avert P; Podkolzin SG; Manoilova O; de Winne H; Weckhuysen BM
    Chemistry; 2004 Apr; 10(7):1637-46. PubMed ID: 15054750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst.
    Dai XP; Wu Q; Li RJ; Yu CC; Hao ZP
    J Phys Chem B; 2006 Dec; 110(51):25856-62. PubMed ID: 17181232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of methane over palladium catalysts: effect of the support.
    Escandón LS; Ordóñez S; Vega A; Díez FV
    Chemosphere; 2005 Jan; 58(1):9-17. PubMed ID: 15522328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation.
    Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane oxidation over mixed-conducting SrFe(Al)O3-delta-SrAl2O4 composite.
    Yaremchenko AA; Kharton VV; Valente AA; Veniaminov SA; Belyaev VD; Sobyanin VA; Marques FM
    Phys Chem Chem Phys; 2007 Jun; 9(21):2744-52. PubMed ID: 17627318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of high specific surface area CuO-CeO2 catalysts for high temperature processes of hydrogen production: steam re-forming of ethanol and methane dry re-forming.
    Djinović P; Batista J; Cehić B; Pintar A
    J Phys Chem A; 2010 Mar; 114(11):3939-49. PubMed ID: 19883056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic oxidation activity of Pt3O4 surfaces and thin films.
    Seriani N; Pompe W; Ciacchi LC
    J Phys Chem B; 2006 Aug; 110(30):14860-9. PubMed ID: 16869596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and structural characterization of chlorine loading effects on Mo/Si:Ti catalysts in oxidative dehydrogenation of ethane.
    Liu C; Ozkan US
    J Phys Chem A; 2005 Feb; 109(6):1260-8. PubMed ID: 16833438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.
    Rabe S; Nachtegaal M; Vogel F
    Phys Chem Chem Phys; 2007 Mar; 9(12):1461-8. PubMed ID: 17356753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide.
    Hurtado P; Ordóñez S; Vega A; Díez FV
    Chemosphere; 2004 May; 55(5):681-9. PubMed ID: 15013673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, Characterization, and Catalytic Properties of Clay-Based Nickel Catalysts for Methane Reforming.
    Wang S; Zhu HY; Lu GQ
    J Colloid Interface Sci; 1998 Aug; 204(1):128-34. PubMed ID: 9665775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Lanthanum Precursor on the Activity of Nickel Catalysts in the Mixed-Methane Reforming Process.
    Zakrzewski M; Shtyka O; Rogowski J; Ciesielski R; Kedziora A; Maniecki T
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers.
    Belokon YN; Clegg W; Harrington RW; Maleev VI; North M; Pujol MO; Usanov DL; Young C
    Chemistry; 2009; 15(9):2148-65. PubMed ID: 19145602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.