These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17295549)

  • 1. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy.
    Coffey DC; Reid OG; Rodovsky DB; Bartholomew GP; Ginger DS
    Nano Lett; 2007 Mar; 7(3):738-44. PubMed ID: 17295549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling film morphology in conjugated polymer:fullerene blends with surface patterning.
    Park LY; Munro AM; Ginger DS
    J Am Chem Soc; 2008 Nov; 130(47):15916-26. PubMed ID: 18983150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and Intensity Modulated Photocurrent Imaging of Polymer/Fullerene Solar Cells.
    Gao Y; Wise AJ; Thomas AK; Grey JK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):285-93. PubMed ID: 26694978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells.
    Pingree LS; Reid OG; Ginger DS
    Nano Lett; 2009 Aug; 9(8):2946-52. PubMed ID: 19588929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono- and bis-fullerene adducts.
    Muth MA; Mitchell W; Tierney S; Lada TA; Xue X; Richter H; Carrasco-Orozco M; Thelakkat M
    Nanotechnology; 2013 Dec; 24(48):484001. PubMed ID: 24196215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [70]fullerene-based materials for organic solar cells.
    Troshin PA; Hoppe H; Peregudov AS; Egginger M; Shokhovets S; Gobsch G; Sariciftci NS; Razumov VF
    ChemSusChem; 2011 Jan; 4(1):119-24. PubMed ID: 21226221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase.
    Radbeh R; Parbaile E; Bouclé J; Di Bin C; Moliton A; Coudert V; Rossignol F; Ratier B
    Nanotechnology; 2010 Jan; 21(3):035201. PubMed ID: 19966408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging Charge Transfer State Excitations in Polymer/Fullerene Solar Cells with Time-Resolved Electrostatic Force Microscopy.
    Cox PA; Glaz MS; Harrison JS; Peurifoy SR; Coffey DC; Ginger DS
    J Phys Chem Lett; 2015 Aug; 6(15):2852-8. PubMed ID: 26267169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticorrelation between Local Photoluminescence and Photocurrent Suggests Variability in Contact to Active Layer in Perovskite Solar Cells.
    Eperon GE; Moerman D; Ginger DS
    ACS Nano; 2016 Nov; 10(11):10258-10266. PubMed ID: 27749044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale interfacial band mapping across vertically phased-separated polymer/fullerene hybrid solar cells.
    Shih MC; Huang BC; Lin CC; Li SS; Chen HA; Chiu YP; Chen CW
    Nano Lett; 2013 Jun; 13(6):2387-92. PubMed ID: 23621647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Correlation of Nanoscale Morphology and Device Performance to Study Photocurrent Generation in Donor-Enriched Phases of Polymer Solar Cells.
    Ben Dkhil S; Perkhun P; Luo C; Müller D; Alkarsifi R; Barulina E; Avalos Quiroz YA; Margeat O; Dubas ST; Koganezawa T; Kuzuhara D; Yoshimoto N; Caddeo C; Mattoni A; Zimmermann B; Würfel U; Pfannmöller M; Bals S; Ackermann J; Videlot-Ackermann C
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28404-28415. PubMed ID: 32476409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy.
    Richards JJ; Whittle CL; Shao G; Pozzo LD
    ACS Nano; 2014 May; 8(5):4313-24. PubMed ID: 24707810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester.
    Rice AH; Giridharagopal R; Zheng SX; Ohuchi FS; Ginger DS; Luscombe CK
    ACS Nano; 2011 Apr; 5(4):3132-40. PubMed ID: 21443250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fullerene intercalation on the conformation and packing of poly-(2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4-phenylenevinylene).
    Wise AJ; Precit MR; Papp AM; Grey JK
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3011-9. PubMed ID: 21736326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of mesoscopic PCBM crystallites in solvent vapor annealed copolymer solar cells.
    Bull TA; Pingree LS; Jenekhe SA; Ginger DS; Luscombe CK
    ACS Nano; 2009 Mar; 3(3):627-36. PubMed ID: 19228011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends.
    Campoy-Quiles M; Ferenczi T; Agostinelli T; Etchegoin PG; Kim Y; Anthopoulos TD; Stavrinou PN; Bradley DD; Nelson J
    Nat Mater; 2008 Feb; 7(2):158-64. PubMed ID: 18204451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nanomorphological changes on the performance of solar cells with blends of poly[9,9'-dioctyl-fluorene-co-bithiophene] and a soluble fullerene.
    Huang JH; Ho ZY; Kekuda D; Chang Y; Chu CW; Ho KC
    Nanotechnology; 2009 Jan; 20(2):025202. PubMed ID: 19417264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells.
    Zhao D; Tang W; Ke L; Tan ST; Sun XW
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):829-37. PubMed ID: 20356288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature.
    Ben Dkhil S; Pfannmöller M; Schröder RR; Alkarsifi R; Gaceur M; Köntges W; Heidari H; Bals S; Margeat O; Ackermann J; Videlot-Ackermann C
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3874-3884. PubMed ID: 29327577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.