BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17295922)

  • 1. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells.
    Choi AO; Cho SJ; Desbarats J; Lovrić J; Maysinger D
    J Nanobiotechnology; 2007 Feb; 5():1. PubMed ID: 17295922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models.
    Liu J; Hu R; Liu J; Zhang B; Wang Y; Liu X; Law WC; Liu L; Ye L; Yong KT
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():222-31. PubMed ID: 26354258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes.
    Nguyen KC; Rippstein P; Tayabali AF; Willmore WG
    Toxicol Sci; 2015 Jul; 146(1):31-42. PubMed ID: 25809595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of quantum dot cytotoxicity: interpretation of nanoparticle concentrations versus intracellular nanoparticle numbers.
    Manshian BB; Abdelmonem AM; Kantner K; Pelaz B; Klapper M; Nardi Tironi C; Parak WJ; Himmelreich U; Soenen SJ
    Nanotoxicology; 2016 Nov; 10(9):1318-28. PubMed ID: 27416974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress.
    Luo YH; Wu SB; Wei YH; Chen YC; Tsai MH; Ho CC; Lin SY; Yang CS; Lin P
    Chem Res Toxicol; 2013 May; 26(5):662-73. PubMed ID: 23617821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots.
    Lovrić J; Bazzi HS; Cuie Y; Fortin GR; Winnik FM; Maysinger D
    J Mol Med (Berl); 2005 May; 83(5):377-85. PubMed ID: 15688234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term exposure to CdTe quantum dots causes functional impairments in live cells.
    Cho SJ; Maysinger D; Jain M; Röder B; Hackbarth S; Winnik FM
    Langmuir; 2007 Feb; 23(4):1974-80. PubMed ID: 17279683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence on cell cycle and cell division by various cadmium-containing quantum dots.
    Liu Y; Wang P; Wang Y; Zhu Z; Lao F; Liu X; Cong W; Chen C; Gao Y; Liu Y
    Small; 2013 Jul; 9(14):2440-51. PubMed ID: 23794484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death.
    Lovrić J; Cho SJ; Winnik FM; Maysinger D
    Chem Biol; 2005 Nov; 12(11):1227-34. PubMed ID: 16298302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot cytotoxicity and ways to reduce it.
    Winnik FM; Maysinger D
    Acc Chem Res; 2013 Mar; 46(3):672-80. PubMed ID: 22775328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of quantum dot nanoparticle cellular uptake.
    Zhang LW; Monteiro-Riviere NA
    Toxicol Sci; 2009 Jul; 110(1):138-55. PubMed ID: 19414515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and release of colloidal 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots in human umbilical vein endothelial cells.
    Fontana JM; Yin H; Chen Y; Florez R; Brismar H; Fu Y
    Int J Nanomedicine; 2017; 12():8615-8629. PubMed ID: 29270011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies.
    Tsoi KM; Dai Q; Alman BA; Chan WC
    Acc Chem Res; 2013 Mar; 46(3):662-71. PubMed ID: 22853558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes.
    Ryman-Rasmussen JP; Riviere JE; Monteiro-Riviere NA
    J Invest Dermatol; 2007 Jan; 127(1):143-53. PubMed ID: 16902417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores.
    Bradburne CE; Delehanty JB; Boeneman Gemmill K; Mei BC; Mattoussi H; Susumu K; Blanco-Canosa JB; Dawson PE; Medintz IL
    Bioconjug Chem; 2013 Sep; 24(9):1570-83. PubMed ID: 23879393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools.
    Tasso M; Singh MK; Giovanelli E; Fragola A; Loriette V; Regairaz M; Dautry F; Treussart F; Lenkei Z; Lequeux N; Pons T
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26904-13. PubMed ID: 26551755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots.
    Wang HY; Hua XW; Jia HR; Liu P; Gu N; Chen Z; Wu FG
    J Mater Chem B; 2016 Feb; 4(5):834-843. PubMed ID: 32263155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent approach for visually observing quantum dot uptake in living organisms.
    Kim SW; Kwak JI; An YJ
    Chemosphere; 2016 Feb; 144():1763-70. PubMed ID: 26524145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallomics Study of CdSe/ZnS Quantum Dots in HepG2 Cells.
    Peng L; He M; Chen B; Qiao Y; Hu B
    ACS Nano; 2015 Oct; 9(10):10324-34. PubMed ID: 26389814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging.
    Ghormade V; Gholap H; Kale S; Kulkarni V; Bhat S; Paknikar K
    J Biomater Sci Polym Ed; 2015; 26(1):42-56. PubMed ID: 25410797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.