These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17297822)

  • 1. Why do transposed stimuli enhance binaural processing?: Interaural envelope correlation vs envelope normalized fourth moment.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2007 Jan; 121(1):EL23-8. PubMed ID: 17297822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory processing of interaural timing information: new insights.
    Bernstein LR
    J Neurosci Res; 2001 Dec; 66(6):1035-46. PubMed ID: 11746435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When and how envelope "rate-limitations" affect processing of interaural temporal disparities conveyed by high-frequency stimuli.
    Bernstein LR; Trahiotis C
    Adv Exp Med Biol; 2013; 787():263-71. PubMed ID: 23716232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization.
    Dreyer A; Delgutte B
    J Neurophysiol; 2006 Nov; 96(5):2327-41. PubMed ID: 16807349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural and behavioral sensitivity to interaural time differences using amplitude modulated tones with mismatched carrier frequencies.
    Blanks DA; Roberts JM; Buss E; Hall JW; Fitzpatrick DC
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):393-408. PubMed ID: 17657543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates.
    Monaghan JJ; Bleeck S; McAlpine D
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing sensitivity to interaural delays at high frequencies by using "transposed stimuli".
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1026-36. PubMed ID: 12243151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences.
    Joris PX; Yin TC
    J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The apparent immunity of high-frequency "transposed" stimuli to low-frequency binaural interference.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2004 Nov; 116(5):3062-9. PubMed ID: 15603151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting quantitatively for sensitivity to envelope-based interaural temporal disparities at high frequencies.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2010 Sep; 128(3):1224-34. PubMed ID: 20815458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual sensitivity to high-frequency interaural time differences created by rustling sounds.
    Ewert SD; Kaiser K; Kernschmidt L; Wiegrebe L
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):131-43. PubMed ID: 22124890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. III. Evidence for cross-correlation.
    Yin TC; Chan JC; Carney LH
    J Neurophysiol; 1987 Sep; 58(3):562-83. PubMed ID: 3655883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of pause, attack, and decay duration of the ongoing envelope on sound lateralization.
    Dietz M; Klein-Hennig M; Hohmann V
    J Acoust Soc Am; 2015 Feb; 137(2):EL137-43. PubMed ID: 25698041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity to Interaural Time Differences Conveyed in the Stimulus Envelope: Estimating Inputs of Binaural Neurons Through the Temporal Analysis of Spike Trains.
    Dietz M; Wang L; Greenberg D; McAlpine D
    J Assoc Res Otolaryngol; 2016 Aug; 17(4):313-30. PubMed ID: 27294694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing interaural-delay-based extents of laterality at high frequencies by using "transposed stimuli".
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2003 Jun; 113(6):3335-47. PubMed ID: 12822805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binaural hearing in children using Gaussian enveloped and transposed tones.
    Ehlers E; Kan A; Winn MB; Stoelb C; Litovsky RY
    J Acoust Soc Am; 2016 Apr; 139(4):1724. PubMed ID: 27106319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2009 May; 125(5):3234-42. PubMed ID: 19425666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.