These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17297825)

  • 1. The use of resonant scattering to identify stone fracture in shock wave lithotripsy.
    Owen NR; Bailey MR; Crum LA; Sapozhnikov OA; Trusov LA
    J Acoust Soc Am; 2007 Jan; 121(1):EL41-7. PubMed ID: 17297825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanistic analysis of stone fracture in lithotripsy.
    Sapozhnikov OA; Maxwell AD; MacConaghy B; Bailey MR
    J Acoust Soc Am; 2007 Feb; 121(2):1190-202. PubMed ID: 17348540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A schlieren study of the interaction between a lithotripter shock wave and a simulated kidney stone.
    Carnell MT; Emmony DC
    Ultrasound Med Biol; 1995; 21(5):721-4. PubMed ID: 8525563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves.
    Pishchalnikov YA; Sapozhnikov OA; Bailey MR; Williams JC; Cleveland RO; Colonius T; Crum LA; Evan AP; McAteer JA
    J Endourol; 2003 Sep; 17(7):435-46. PubMed ID: 14565872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High intensity focused ultrasound lithotripsy with cavitating microbubbles.
    Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y
    Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloud cavitation control for lithotripsy using high intensity focused ultrasound.
    Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y
    Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
    Cleveland RO; Sapozhnikov OA
    J Acoust Soc Am; 2005 Oct; 118(4):2667-76. PubMed ID: 16266186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of elastic waves producing stone fracture in burst wave lithotripsy.
    Maxwell AD; MacConaghy B; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2020 Mar; 147(3):1607. PubMed ID: 32237849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative evaluation of cavitation bubble fields induced by lithotripter shock waves].
    Luderer T; Bohris C; Bellemann ME
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():790-3. PubMed ID: 12465304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Urolithiasis--a change in therapeutic methods extracorporeal shock wave lithotripsy using a Dornier kidney lithotripter HM3].
    Yamamoto K; Kishimoto T; Sakamoto W; Sugimoto T; Iimori H; Kanasawa T; Wada S; Senju M; Nakatani T; Sugimura K
    Hinyokika Kiyo; 1989 Dec; 35(12):2093-8. PubMed ID: 2618909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy.
    Kanao K; Nakashima J; Nakagawa K; Asakura H; Miyajima A; Oya M; Ohigashi T; Murai M
    J Urol; 2006 Oct; 176(4 Pt 1):1453-6; discussion 1456-7. PubMed ID: 16952658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking kidney stones in a homogeneous medium using a trilateration approach.
    Shoar K; Turney BW; Cleveland RO
    J Acoust Soc Am; 2017 Dec; 142(6):3715. PubMed ID: 29289106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy.
    Liu LR; Li QJ; Wei Q; Liu ZH; Xu Y
    Cochrane Database Syst Rev; 2013 Dec; (12):CD008569. PubMed ID: 24318643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved acoustic coupling for shock wave lithotripsy.
    Neucks JS; Pishchalnikov YA; Zancanaro AJ; VonDerHaar JN; Williams JC; McAteer JA
    Urol Res; 2008 Feb; 36(1):61-6. PubMed ID: 18172634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory.
    de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2015 Apr; 58():53-9. PubMed ID: 25553714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.