These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17297940)

  • 1. Development of sulfhydryl-reactive silica for protein immobilization in high-performance affinity chromatography.
    Mallik R; Wa C; Hage DS
    Anal Chem; 2007 Feb; 79(4):1411-24. PubMed ID: 17297940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic analysis of carbamazepine binding to human serum albumin. II. Comparison of the Schiff base and N-hydroxysuccinimide immobilization methods.
    Kim HS; Mallik R; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Jun; 837(1-2):138-46. PubMed ID: 16687257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of enhanced capacity affinity microcolumns by using a hybrid of protein cross-linking/modification and immobilization.
    Zheng X; Podariu M; Bi C; Hage DS
    J Chromatogr A; 2015 Jun; 1400():82-90. PubMed ID: 25981291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of N-hydroxysuccinimide-activated silica for immobilizing human serum albumin in liquid chromatography columns.
    Kim HS; Kye YS; Hage DS
    J Chromatogr A; 2004 Sep; 1049(1-2):51-61. PubMed ID: 15499917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns.
    Mallik R; Jiang T; Hage DS
    Anal Chem; 2004 Dec; 76(23):7013-22. PubMed ID: 15571354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an affinity silica monolith containing human serum albumin for chiral separations.
    Mallik R; Hage DS
    J Pharm Biomed Anal; 2008 Apr; 46(5):820-30. PubMed ID: 17475436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chymotrypsin immobilization on epoxy monolithic silica columns: development and characterization of a bioreactor for protein digestion.
    Temporini C; Calleri E; Campèse D; Cabrera K; Félix G; Massolini G
    J Sep Sci; 2007 Nov; 30(17):3069-76. PubMed ID: 17924585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of protein entrapment in affinity microcolumns using hydrazide-activated silica and glycogen as a capping agent.
    Vargas-Badilla J; Poddar S; Azaria S; Zhang C; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jul; 1121():1-8. PubMed ID: 31079009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolith weak affinity chromatography for μg-protein-ligand interaction study.
    Lecas L; Randon J; Berthod A; Dugas V; Demesmay C
    J Pharm Biomed Anal; 2019 Mar; 166():164-173. PubMed ID: 30654204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of human serum albumin to silica particles by means of polymers: a liquid chromatographic study of the selectivity of resulting chiral stationary phases.
    Millot MC; Taleb NL; Sebille B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Feb; 768(1):157-66. PubMed ID: 11939549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of tryptophan-modified human serum albumin columns for site-specific studies of drug-protein interactions by high-performance affinity chromatography.
    Chattopadhyay A; Tian T; Kortum L; Hage DS
    J Chromatogr B Biomed Sci Appl; 1998 Sep; 715(1):183-90. PubMed ID: 9792509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polar silica-based stationary phases. Part III- Neutral silica stationary phase with surface bound maltose for affinity chromatography at reduced non-specific interactions.
    Rathnasekara R; El Rassi Z
    J Chromatogr A; 2017 Jul; 1508():33-41. PubMed ID: 28602504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of hydrophobic peptidic ligands to hydrophilic chromatographic matrix: a preconcentration approach.
    Gautam S; Loh KC
    Anal Biochem; 2012 Apr; 423(2):202-9. PubMed ID: 22342623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanogen bromide activation and coupling of ligands to diol-containing silica for high-performance affinity chromatography optimization of conditions.
    Jurado LA; Mosley J; Jarrett HW
    J Chromatogr A; 2002 Sep; 971(1-2):95-104. PubMed ID: 12350129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of silica supports in affinity chromatography.
    Schiel JE; Mallik R; Soman S; Joseph KS; Hage DS
    J Sep Sci; 2006 Apr; 29(6):719-37. PubMed ID: 16830485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human serum albumin binding to silica nanoparticles--effect of protein fatty acid ligand.
    Ang JC; Henderson MJ; Campbell RA; Lin JM; Yaron PN; Nelson A; Faunce T; White JW
    Phys Chem Chem Phys; 2014 Jun; 16(21):10157-68. PubMed ID: 24595605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characteristics of the human serum albumin-triazine chiral stationary phase.
    Zhang Q; Zou H; Chen X; Wang H; Luo Q; Ni J
    Chirality; 2000 Nov; 12(10):714-9. PubMed ID: 11054829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions.
    Yoo MJ; Hage DS
    J Sep Sci; 2009 Aug; 32(15-16):2776-85. PubMed ID: 19630007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography.
    Pfaunmiller EL; Hartmann M; Dupper CM; Soman S; Hage DS
    J Chromatogr A; 2012 Dec; 1269():198-207. PubMed ID: 23010249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention characteristics of aromatic hydrocarbons on silica and aminopropyl-modified monolithic columns in normal-phase HPLC.
    Sutton PA; Nesterenko PN
    J Sep Sci; 2007 Nov; 30(17):2900-9. PubMed ID: 17924586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.