These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17297970)

  • 1. "Click" modification of silica surfaces and glass microfluidic channels.
    Prakash S; Long TM; Selby JC; Moore JS; Shannon MA
    Anal Chem; 2007 Feb; 79(4):1661-7. PubMed ID: 17297970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling organosilicon chemistries on inert polymer surfaces with a vapor-deposited silica layer.
    Anderson A; Ashurst WR
    Langmuir; 2009 Oct; 25(19):11541-8. PubMed ID: 19655704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA.
    Long TM; Prakash S; Shannon MA; Moore JS
    Langmuir; 2006 Apr; 22(9):4104-9. PubMed ID: 16618151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma surface modification of cyclo-olefin polymers and its application to lateral flow bioassays.
    Dudek MM; Gandhiraman RP; Volcke C; Cafolla AA; Daniels S; Killard AJ
    Langmuir; 2009 Sep; 25(18):11155-61. PubMed ID: 19735157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.
    Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY
    J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous silica coatings on glass fibers via bioinspired approaches.
    Pogula SD; Patwardhan SV; Perry CC; Gillespie JW; Yarlagadda S; Kiick KL
    Langmuir; 2007 Jun; 23(12):6677-83. PubMed ID: 17489615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microarray glass slides coated with block copolymer brushes obtained by reversible addition chain-transfer polymerization.
    Pirri G; Chiari M; Damin F; Meo A
    Anal Chem; 2006 May; 78(9):3118-24. PubMed ID: 16643002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M; Wright PC; McArthur SL
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein adsorption on polymer-modified silica particle surface.
    Tsukagoshi T; Kondo Y; Yoshino N
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):101-7. PubMed ID: 17118630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface patterning of (bio)molecules onto the inner wall of fused-silica capillary tubes.
    Dendane N; Hoang A; Renaudet O; Vinet F; Dumy P; Defrancq E
    Lab Chip; 2008 Dec; 8(12):2161-3. PubMed ID: 19023481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy to obtain a hyaluronan monolayer on solid substrates.
    Pasqui D; Atrei A; Barbucci R
    Biomacromolecules; 2007 Nov; 8(11):3531-9. PubMed ID: 17939717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices.
    Hui AY; Wang G; Lin B; Chan WT
    Lab Chip; 2005 Oct; 5(10):1173-7. PubMed ID: 16175276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA.
    Salim M; O'Sullivan B; McArthur SL; Wright PC
    Lab Chip; 2007 Jan; 7(1):64-70. PubMed ID: 17180206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silane coupling agent bearing a photoremovable succinimidyl carbonate for patterning amines on glass and silicon surfaces with controlled surface densities.
    Nakayama H; Nakanishi J; Shimizu T; Yoshino Y; Iwai H; Kaneko S; Horiike Y; Yamaguchi K
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):88-97. PubMed ID: 19910170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a biomimetic surface on microfluidic chips for biofouling resistance.
    Bi H; Zhong W; Meng S; Kong J; Yang P; Liu B
    Anal Chem; 2006 May; 78(10):3399-405. PubMed ID: 16689543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips.
    Chen L; Ren J; Bi R; Chen D
    Electrophoresis; 2004 Mar; 25(6):914-21. PubMed ID: 15004855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific immobilization of DNA in glass microchannels via photolithography.
    Vong T; ter Maat J; van Beek TA; van Lagen B; Giesbers M; van Hest JC; Zuilhof H
    Langmuir; 2009 Dec; 25(24):13952-8. PubMed ID: 20560554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.