These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17298086)

  • 1. A quantitative proteomic analysis of light adaptation in a globally significant marine cyanobacterium Prochlorococcus marinus MED4.
    Pandhal J; Wright PC; Biggs CA
    J Proteome Res; 2007 Mar; 6(3):996-1005. PubMed ID: 17298086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular acclimation strategies of a minimal picocyanobacterium to phosphate stress.
    Fuszard MA; Wright PC; Biggs CA
    FEMS Microbiol Lett; 2010 May; 306(2):127-34. PubMed ID: 20370833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4.
    Steglich C; Frankenberg-Dinkel N; Penno S; Hess WR
    Environ Microbiol; 2005 Oct; 7(10):1611-8. PubMed ID: 16156734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem.
    Bibby TS; Mary I; Nield J; Partensky F; Barber J
    Nature; 2003 Aug; 424(6952):1051-4. PubMed ID: 12944966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus.
    Sullivan MB; Waterbury JB; Chisholm SW
    Nature; 2003 Aug; 424(6952):1047-51. PubMed ID: 12944965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: uptake physiology.
    Krumhardt KM; Callnan K; Roache-Johnson K; Swett T; Robinson D; Reistetter EN; Saunders JK; Rocap G; Moore LR
    Environ Microbiol; 2013 Jul; 15(7):2114-28. PubMed ID: 23387819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting mechanisms of proteomic nitrogen thrift in Prochlorococcus.
    Gilbert JD; Fagan WF
    Mol Ecol; 2011 Jan; 20(1):92-104. PubMed ID: 21091557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics.
    Matallana-Surget S; Joux F; Raftery MJ; Cavicchioli R
    Environ Microbiol; 2009 Oct; 11(10):2660-75. PubMed ID: 19601963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental sequence data from the Sargasso Sea reveal that the characteristics of genome reduction in Prochlorococcus are not a harbinger for an escalation in genetic drift.
    Hu J; Blanchard JL
    Mol Biol Evol; 2009 Jan; 26(1):5-13. PubMed ID: 18845550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel type of lycopene epsilon-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4.
    Stickforth P; Steiger S; Hess WR; Sandmann G
    Arch Microbiol; 2003 Jun; 179(6):409-15. PubMed ID: 12712234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability.
    Thompson AW; Huang K; Saito MA; Chisholm SW
    ISME J; 2011 Oct; 5(10):1580-94. PubMed ID: 21562599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511.
    Holtzendorff J; Partensky F; Mella D; Lennon JF; Hess WR; Garczarek L
    J Biol Rhythms; 2008 Jun; 23(3):187-99. PubMed ID: 18487411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions.
    Martiny AC; Huang Y; Li W
    Environ Microbiol; 2009 Jun; 11(6):1340-7. PubMed ID: 19187282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic changes in the proteome of Synechocystis 6803 in response to CO(2) limitation revealed by quantitative proteomics.
    Battchikova N; Vainonen JP; Vorontsova N; Keranen M; Carmel D; Aro EM
    J Proteome Res; 2010 Nov; 9(11):5896-912. PubMed ID: 20795750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313.
    Mary I; Tu CJ; Grossman A; Vaulot D
    Microbiology (Reading); 2004 May; 150(Pt 5):1271-1281. PubMed ID: 15133090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria.
    Bailey S; Mann NH; Robinson C; Scanlan DJ
    FEBS Lett; 2005 Jan; 579(1):275-80. PubMed ID: 15620726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ).
    Gan CS; Chong PK; Pham TK; Wright PC
    J Proteome Res; 2007 Feb; 6(2):821-7. PubMed ID: 17269738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation.
    Martiny AC; Coleman ML; Chisholm SW
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12552-7. PubMed ID: 16895994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative and functional characterization of the hyper-conserved protein of Prochlorococcus and marine Synechococcus.
    Whidden CE; DeZeeuw KG; Zorz JK; Joy AP; Barnett DA; Johnson MS; Zhaxybayeva O; Cockshutt AM
    PLoS One; 2014; 9(10):e109327. PubMed ID: 25360678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress responses in Prochlorococcus MIT9313 vs. SS120 involve differential expression of genes encoding proteases ClpP, FtsH and Lon.
    Gómez-Baena G; Rangel OA; López-Lozano A; García-Fernández JM; Diez J
    Res Microbiol; 2009 Oct; 160(8):567-75. PubMed ID: 19732824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.