These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 17298363)
1. Identification of cellulolytic bacteria in soil by stable isotope probing. Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363 [TBL] [Abstract][Full Text] [Related]
2. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Bernard L; Mougel C; Maron PA; Nowak V; Lévêque J; Henault C; Haichar FZ; Berge O; Marol C; Balesdent J; Gibiat F; Lemanceau P; Ranjard L Environ Microbiol; 2007 Mar; 9(3):752-64. PubMed ID: 17298374 [TBL] [Abstract][Full Text] [Related]
3. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Mahmood S; Paton GI; Prosser JI Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858 [TBL] [Abstract][Full Text] [Related]
4. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Li T; Mazéas L; Sghir A; Leblon G; Bouchez T Environ Microbiol; 2009 Apr; 11(4):889-904. PubMed ID: 19128320 [TBL] [Abstract][Full Text] [Related]
5. Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. Jones CM; Thies JE J Microbiol Methods; 2007 May; 69(2):256-67. PubMed ID: 17343936 [TBL] [Abstract][Full Text] [Related]
7. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. Schellenberger S; Kolb S; Drake HL Environ Microbiol; 2010 Apr; 12(4):845-61. PubMed ID: 20050868 [TBL] [Abstract][Full Text] [Related]
8. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. Cébron A; Bodrossy L; Chen Y; Singer AC; Thompson IP; Prosser JI; Murrell JC FEMS Microbiol Ecol; 2007 Oct; 62(1):12-23. PubMed ID: 17714486 [TBL] [Abstract][Full Text] [Related]
9. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771 [TBL] [Abstract][Full Text] [Related]
10. Molecular analysis of bacterial community succession during prolonged compost curing. Danon M; Franke-Whittle IH; Insam H; Chen Y; Hadar Y FEMS Microbiol Ecol; 2008 Jul; 65(1):133-44. PubMed ID: 18537836 [TBL] [Abstract][Full Text] [Related]
11. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327 [TBL] [Abstract][Full Text] [Related]
12. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263 [TBL] [Abstract][Full Text] [Related]
14. Construction of a stable microbial community with high cellulose-degradation ability. Haruta S; Cui Z; Huang Z; Li M; Ishii M; Igarashi Y Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):529-34. PubMed ID: 12172621 [TBL] [Abstract][Full Text] [Related]
15. Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Rangel-Castro JI; Killham K; Ostle N; Nicol GW; Anderson IC; Scrimgeour CM; Ineson P; Meharg A; Prosser JI Environ Microbiol; 2005 Jun; 7(6):828-38. PubMed ID: 15892702 [TBL] [Abstract][Full Text] [Related]
16. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. Antony CP; Kumaresan D; Ferrando L; Boden R; Moussard H; Scavino AF; Shouche YS; Murrell JC ISME J; 2010 Nov; 4(11):1470-80. PubMed ID: 20555363 [TBL] [Abstract][Full Text] [Related]
17. A methane-driven microbial food web in a wetland rice soil. Murase J; Frenzel P Environ Microbiol; 2007 Dec; 9(12):3025-34. PubMed ID: 17991031 [TBL] [Abstract][Full Text] [Related]
18. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. Wood SA; Rueckert A; Cowan DA; Cary SC ISME J; 2008 Mar; 2(3):308-20. PubMed ID: 18239611 [TBL] [Abstract][Full Text] [Related]
19. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498 [TBL] [Abstract][Full Text] [Related]
20. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Talia P; Sede SM; Campos E; Rorig M; Principi D; Tosto D; Hopp HE; Grasso D; Cataldi A Res Microbiol; 2012 Apr; 163(3):221-32. PubMed ID: 22202170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]