BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17298443)

  • 1. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.
    Takeda K; Iizuka M; Watanabe T; Nakagawa J; Kawasaki S; Niimura Y
    FEBS J; 2007 Mar; 274(5):1318-27. PubMed ID: 17298443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synechocystis ferredoxin-NADP(+) oxidoreductase is capable of functioning as ferric reductase and of driving the Fenton reaction in the absence or presence of free flavin.
    Sato J; Takeda K; Nishiyama R; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2011 Apr; 24(2):311-21. PubMed ID: 21221720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
    Cunningham O; Gore MG; Mantle TJ
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a nitroreductase with selective nitroreduction properties in the food and intestinal lactic acid bacterium Lactobacillus plantarum WCFS1.
    Guillén H; Curiel JA; Landete JM; Muñoz R; Herraiz T
    J Agric Food Chem; 2009 Nov; 57(21):10457-65. PubMed ID: 19827797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of photosystem I reaction center by recombinant DrgA protein in isolated thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803.
    Elanskaya IV; Toporova VA; Grivennikova VG; Muronets EM; Lukashev EP; Timofeev KN
    Biochemistry (Mosc); 2009 Oct; 74(10):1080-7. PubMed ID: 19916920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans.
    Sedlácek V; van Spanning RJ; Kucera I
    Arch Biochem Biophys; 2009 Mar; 483(1):29-36. PubMed ID: 19138657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ArsH from the cyanobacterium Synechocystis sp. PCC 6803 is an efficient NADPH-dependent quinone reductase.
    Hervás M; López-Maury L; León P; Sánchez-Riego AM; Florencio FJ; Navarro JA
    Biochemistry; 2012 Feb; 51(6):1178-87. PubMed ID: 22304305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorella vulgaris aldehyde reductase is capable of functioning as ferric reductase and of driving the fenton reaction in the presence of free flavin.
    Sato J; Takeda K; Nishiyama R; Fusayama K; Arai T; Sato T; Watanabe T; Abe A; Nakagawa J; Kawasaki S; Niimura Y
    Biosci Biotechnol Biochem; 2010; 74(4):854-7. PubMed ID: 20445323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of photosystem I reaction center in DrgA mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking soluble NAD(P)H:quinone oxidoreductase.
    Elanskaya IV; Timofeev KN; Grivennikova VG; Kuznetsova GV; Davletshina LN; Lukashev EP; Yaminsky FV
    Biochemistry (Mosc); 2004 Apr; 69(4):445-54. PubMed ID: 15170383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.
    Wu H; Li L; Du J; Yuan Y; Cheng X; Ling HQ
    Plant Cell Physiol; 2005 Sep; 46(9):1505-14. PubMed ID: 16006655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of NAD(P)H-dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6-trinitrotoluene.
    Kim HY; Song HG
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):766-73. PubMed ID: 15789204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824.
    Kutty R; Bennett GN
    Arch Microbiol; 2005 Nov; 184(3):158-67. PubMed ID: 16187099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of bovine serum albumin initiated by the Fenton reaction--effect of EDTA, tert-butylhydroperoxide and tetrahydrofuran.
    Baron CP; Refsgaard HH; Skibsted LH; Andersen ML
    Free Radic Res; 2006 Apr; 40(4):409-17. PubMed ID: 16517506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.