BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17298443)

  • 41. Purification and characterization of wild-type and mutant "classical" nitroreductases of Salmonella typhimurium. L33R mutation greatly diminishes binding of FMN to the nitroreductase of S. typhimurium.
    Watanabe M; Nishino T; Takio K; Sofuni T; Nohmi T
    J Biol Chem; 1998 Sep; 273(37):23922-8. PubMed ID: 9727006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Expression of drgA gene encoding NAD(P)H:quinone-oxidoreductase in cells of the cyanobacterium Synechocystis sp. PCC 6803].
    Karandashova IV; Semina ME; Muronets EM; Elanskaia IV
    Genetika; 2006 Aug; 42(8):1060-4. PubMed ID: 17025155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of a soluble and membrane-associated Fe(III) reductase from the thermophile, Thermus scotoductus (SA-01).
    Möller C; van Heerden E
    FEMS Microbiol Lett; 2006 Dec; 265(2):237-43. PubMed ID: 17073940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resistance to nitrophenolic herbicides and metronidazole in the cyanobacterium Synechocystis sp. PCC 6803 as a result of the inactivation of a nitroreductase-like protein encoded by drgA gene.
    Elanskaya IV; Chesnavichene EA; Vernotte C; Astier C
    FEBS Lett; 1998 May; 428(3):188-92. PubMed ID: 9654132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.
    Vansuyt G; Robin A; Briat JF; Curie C; Lemanceau P
    Mol Plant Microbe Interact; 2007 Apr; 20(4):441-7. PubMed ID: 17427814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2.
    Hallé F; Meyer JM
    Eur J Biochem; 1992 Oct; 209(2):621-7. PubMed ID: 1425668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NADH-ferric reductase activity associated with dihydropteridine reductase.
    Lee PL; Halloran C; Cross AR; Beutler E
    Biochem Biophys Res Commun; 2000 May; 271(3):788-95. PubMed ID: 10814540
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitroreductase from Salmonella typhimurium: characterization and catalytic activity.
    Yanto Y; Hall M; Bommarius AS
    Org Biomol Chem; 2010 Apr; 8(8):1826-32. PubMed ID: 20449486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.
    Pullakhandam R; Nair MK; Kasula S; Kilari S; Thippande TG
    Biochem Biophys Res Commun; 2008 Sep; 374(2):369-72. PubMed ID: 18638448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro.
    Wyman S; Simpson RJ; McKie AT; Sharp PA
    FEBS Lett; 2008 Jun; 582(13):1901-6. PubMed ID: 18498772
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase.
    Liu G; Zhou J; Lv H; Xiang X; Wang J; Zhou M; Qv Y
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1271-9. PubMed ID: 17846764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quinone- and nitroreductase reactions of Thermotoga maritima thioredoxin reductase.
    Valiauga B; Rouhier N; Jacquot JP; Čėnas N
    Acta Biochim Pol; 2015; 62(2):303-9. PubMed ID: 26098718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms.
    Vartivarian SE; Cowart RE
    Arch Biochem Biophys; 1999 Apr; 364(1):75-82. PubMed ID: 10087167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium.
    Rieble S; Joshi DK; Gold MH
    Biochem Biophys Res Commun; 1994 Nov; 205(1):298-304. PubMed ID: 7999039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans.
    Sedláček V; van Spanning RJM; Kučera I
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1294-1301. PubMed ID: 19332830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzymatic reduction of labile iron by organelles of the rat liver. Superior role of an NADH-dependent activity in the outer mitochondrial membrane.
    Pamp K; Kerkweg U; Korth HG; Homann F; Rauen U; Sustmann R; de Groot H; Petrat F
    Biochimie; 2008 Oct; 90(10):1591-601. PubMed ID: 18627785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of pH on the initial rate kinetics of the dimeric biliverdin-IXalpha reductase from the cyanobacterium Synechocystis PCC6803.
    Hayes JM; Mantle TJ
    FEBS J; 2009 Aug; 276(16):4414-25. PubMed ID: 19614741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain.
    Welland A; Garnaud PE; Kitamura M; Miles CS; Daff S
    Biochemistry; 2008 Sep; 47(37):9771-80. PubMed ID: 18717591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The thioredoxin reductase-glutaredoxins-ferredoxin crossroad pathway for selenate tolerance in Synechocystis PCC6803.
    Marteyn B; Domain F; Legrain P; Chauvat F; Cassier-Chauvat C
    Mol Microbiol; 2009 Jan; 71(2):520-32. PubMed ID: 19040637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.