These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17298849)

  • 41. [Mechanisms of spreading of ascending activating influences from the food center of the lateral hypothalamus to the cerebral cortex].
    Sudakov KV; Nedel'kina LA; Salukvadze NA
    Fiziol Zh SSSR Im I M Sechenova; 1971 Aug; 57(8):1099-906. PubMed ID: 5110235
    [No Abstract]   [Full Text] [Related]  

  • 42. A practical 24 channel microelectrode for neural recording in vivo.
    Kuperstein M; Whittington DA
    IEEE Trans Biomed Eng; 1981 Mar; 28(3):288-93. PubMed ID: 6262216
    [No Abstract]   [Full Text] [Related]  

  • 43. [The significance of the interhemispheric asymmetry of evoked potentials to light in epilepsy].
    Myslobodskiĭ MS
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1973; 73(11):1631-6. PubMed ID: 4204932
    [No Abstract]   [Full Text] [Related]  

  • 44. Coupling between cortical potentials from different areas.
    Callaway E; Harris PR
    Science; 1974 Mar; 183(4127):873-5. PubMed ID: 4810846
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An event-related potential component sensitive to images of the human body.
    Thierry G; Pegna AJ; Dodds C; Roberts M; Basan S; Downing P
    Neuroimage; 2006 Aug; 32(2):871-9. PubMed ID: 16750639
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Localization of attention related cortical structures by evoked potentials].
    Szelenberger W
    Neurol Neurochir Pol; 2000; 34(2 Suppl):43-52. PubMed ID: 10962736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Event-related potentials to overlapping shapes: effects of saliency and interference.
    Brodeur MB; Lepore F; Bacon BA; Renoult L; Debruille JB
    Atten Percept Psychophys; 2010 Aug; 72(6):1471-9. PubMed ID: 20675794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery cycle of visual evoked potentials in normal and schizophrenic subjects.
    Floris V; Morocutti C; Amabile G; Bernardi G; Rizzo PA; Vasconetto C
    Electroencephalogr Clin Neurophysiol; 1967; ():Suppl 26:74-81. PubMed ID: 4177150
    [No Abstract]   [Full Text] [Related]  

  • 49. [Comparative study of the action of psilocybine on the evoked potentials of the occipital cortex and of a specific cortical area in a cercopith, Papio papio].
    Bermond F; Bert J; Ayats H
    C R Seances Soc Biol Fil; 1967; 161(1):147-50. PubMed ID: 4234306
    [No Abstract]   [Full Text] [Related]  

  • 50. Classification of spoken words using surface local field potentials.
    Kellis S; Miller K; Thomson K; Brown R; House P; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3827-30. PubMed ID: 21097062
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laminar microelectrode studies of specific somatosensory cortical potentials.
    LI CL; CULLEN C; JASPER HH
    J Neurophysiol; 1956 Mar; 19(2):111-30. PubMed ID: 13295835
    [No Abstract]   [Full Text] [Related]  

  • 52. Latent periods of the components of evoked potential.
    Pokrovskii AN
    Dokl Biol Sci; 2002; 384():202-5. PubMed ID: 12134484
    [No Abstract]   [Full Text] [Related]  

  • 53. A method for analyzing variations in evoked responses.
    Burns SK; Melzack R
    Electroencephalogr Clin Neurophysiol; 1966 Apr; 20(4):407-9. PubMed ID: 4143680
    [No Abstract]   [Full Text] [Related]  

  • 54. Microelectrode studies on the visual cortex.
    VON BAUMGARTEN R; JUNG R
    Rev Neurol (Paris); 1952; 87(2):151-5. PubMed ID: 13014771
    [No Abstract]   [Full Text] [Related]  

  • 55. Preparation of a neural electrode implantation device for in-vivo surgical use.
    Tawakol O; Bredeson SD; Troyk PR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4507-4510. PubMed ID: 28269279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced Proliferation and Differentiation of Human Osteoblasts by Remotely Controlled Magnetic-Field-Induced Electric Stimulation Using Flexible Substrates.
    Careta O; Nicolenco A; Perdikos F; Blanquer A; Ibañez E; Pellicer E; Stefani C; Sepúlveda B; Nogués J; Sort J; Nogués C
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58054-58066. PubMed ID: 38051712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogel-Based Organic Subdural Electrode with High Conformability to Brain Surface.
    Oribe S; Yoshida S; Kusama S; Osawa SI; Nakagawa A; Iwasaki M; Tominaga T; Nishizawa M
    Sci Rep; 2019 Sep; 9(1):13379. PubMed ID: 31527626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain.
    Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H
    Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo.
    Viventi J; Kim DH; Vigeland L; Frechette ES; Blanco JA; Kim YS; Avrin AE; Tiruvadi VR; Hwang SW; Vanleer AC; Wulsin DF; Davis K; Gelber CE; Palmer L; Van der Spiegel J; Wu J; Xiao J; Huang Y; Contreras D; Rogers JA; Litt B
    Nat Neurosci; 2011 Nov; 14(12):1599-605. PubMed ID: 22081157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micro-field evoked potentials recorded from the porcine sub-dural cortical surface utilizing a microelectrode array.
    Kitzmiller JP; Hansford DJ; Fortin LD; Obrietan KH; Bergdall VK; Beversdorf DQ
    J Neurosci Methods; 2007 May; 162(1-2):155-61. PubMed ID: 17298849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.