These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17299042)

  • 21. Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae.
    Sidorova JM; Breeden LL
    Mol Cell Biol; 2003 May; 23(10):3405-16. PubMed ID: 12724400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dun1 counts on rad53 to be turned on.
    Zhang W; Durocher D
    Mol Cell; 2008 Jul; 31(1):1-2. PubMed ID: 18614039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remodelling the Rad9 checkpoint complex: preparing Rad53 for action.
    van den Bosch M; Lowndes NF
    Cell Cycle; 2004 Feb; 3(2):119-22. PubMed ID: 14712069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools.
    Tsaponina O; Barsoum E; Aström SU; Chabes A
    PLoS Genet; 2011 May; 7(5):e1002061. PubMed ID: 21573136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Rad53
    Bruhn C; Ajazi A; Ferrari E; Lanz MC; Batrin R; Choudhary R; Walvekar A; Laxman S; Longhese MP; Fabre E; Smolka MB; Foiani M
    Nat Commun; 2020 Aug; 11(1):4154. PubMed ID: 32814778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mec1-independent activation of the Rad53 checkpoint kinase revealed by quantitative analysis of protein localization dynamics.
    Ho B; Sanford EJ; Loll-Krippleber R; Torres NP; Smolka MB; Brown GW
    Elife; 2023 Jun; 12():. PubMed ID: 37278514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways.
    Sanchez Y; Desany BA; Jones WJ; Liu Q; Wang B; Elledge SJ
    Science; 1996 Jan; 271(5247):357-60. PubMed ID: 8553072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1.
    Zhao X; Rothstein R
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3746-51. PubMed ID: 11904430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae.
    Taylor SD; Zhang H; Eaton JS; Rodeheffer MS; Lebedeva MA; O'rourke TW; Siede W; Shadel GS
    Mol Biol Cell; 2005 Jun; 16(6):3010-8. PubMed ID: 15829566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.
    Smolka MB; Albuquerque CP; Chen SH; Zhou H
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10364-9. PubMed ID: 17563356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction.
    Jiao Y; Seeger K; Lautrette A; Gaubert A; Mousson F; Guerois R; Mann C; Ochsenbein F
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2866-71. PubMed ID: 22323608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Checkpoint genes and Exo1 regulate nearby inverted repeat fusions that form dicentric chromosomes in Saccharomyces cerevisiae.
    Kaochar S; Shanks L; Weinert T
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21605-10. PubMed ID: 21098663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Budding yeast Rtt107 prevents checkpoint hyperactivation after replicative stress by limiting DNA damage.
    Brown JAR; Kobor MS
    DNA Repair (Amst); 2019 Feb; 74():1-16. PubMed ID: 30639951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion.
    Grandin N; Bailly A; Charbonneau M
    Biol Cell; 2005 Oct; 97(10):799-814. PubMed ID: 15760303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR; Sclafani RA
    Genetics; 2006 Sep; 174(1):87-99. PubMed ID: 16816422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA).
    Lopez-Mosqueda J; Vidanes GM; Toczyski DP
    Cell Cycle; 2010 Nov; 9(21):4266-8. PubMed ID: 20962588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae.
    Gunjan A; Verreault A
    Cell; 2003 Nov; 115(5):537-49. PubMed ID: 14651846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae.
    Conde F; Ontoso D; Acosta I; Gallego-Sánchez A; Bueno A; San-Segundo PA
    DNA Repair (Amst); 2010 Oct; 9(10):1038-49. PubMed ID: 20674515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.