These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 17299209)
1. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Moldes AB; Torrado A; Converti A; Domínguez JM Appl Biochem Biotechnol; 2006 Dec; 135(3):219-28. PubMed ID: 17299209 [TBL] [Abstract][Full Text] [Related]
2. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion. Moldes AB; Bustos G; Torrado A; Domínguez JM Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452 [TBL] [Abstract][Full Text] [Related]
3. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Bustos G; Moldes AB; Cruz JM; Domínguez JM Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. Moldes AB; Torrado AM; Barral MT; Domínguez JM J Agric Food Chem; 2007 May; 55(11):4481-6. PubMed ID: 17469840 [TBL] [Abstract][Full Text] [Related]
5. Development of a factorial design to study the effect of the major hemicellulosic sugars on the production of surface-active compounds by L. pentosus. Portilla-Rivera OM; Torrado-Agrasar A; Carballo J; Domínguez JM; Moldes AB J Agric Food Chem; 2009 Oct; 57(19):9057-62. PubMed ID: 19807160 [TBL] [Abstract][Full Text] [Related]
6. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Garde A; Jonsson G; Schmidt AS; Ahring BK Bioresour Technol; 2002 Feb; 81(3):217-23. PubMed ID: 11800488 [TBL] [Abstract][Full Text] [Related]
7. Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes. García-Diéguez C; Salgado JM; Roca E; Domínguez JM Bioprocess Biosyst Eng; 2011 Sep; 34(7):869-78. PubMed ID: 21461772 [TBL] [Abstract][Full Text] [Related]
8. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation. Rodríguez-Pazo N; Salgado JM; Cortés-Diéguez S; Domínguez JM Appl Biochem Biotechnol; 2013 Apr; 169(7):2175-88. PubMed ID: 23417349 [TBL] [Abstract][Full Text] [Related]
9. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation. Wischral D; Arias JM; Modesto LF; de França Passos D; Pereira N Biotechnol Prog; 2019 Jan; 35(1):e2718. PubMed ID: 30295001 [TBL] [Abstract][Full Text] [Related]
10. Revisiting the production of L( +)-lactic acid from vine shoots: bioconversion improvements by employing thermotolerant bacteria. Garita-Cambronero J; Hijosa-Valsero M; Paniagua-García AI; Díez-Antolínez R Appl Microbiol Biotechnol; 2021 Dec; 105(24):9385-9402. PubMed ID: 34799761 [TBL] [Abstract][Full Text] [Related]
11. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Guo W; Jia W; Li Y; Chen S Appl Biochem Biotechnol; 2010 May; 161(1-8):124-36. PubMed ID: 19937398 [TBL] [Abstract][Full Text] [Related]
12. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor. Cubas-Cano E; González-Fernández C; Ballesteros M; Tomás-Pejó E Biotechnol Prog; 2019 Jan; 35(1):e2739. PubMed ID: 30378762 [TBL] [Abstract][Full Text] [Related]
13. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Zhu Y; Lee YY; Elander RT Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):721-38. PubMed ID: 18478429 [TBL] [Abstract][Full Text] [Related]
14. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Ohkouchi Y; Inoue Y Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483 [TBL] [Abstract][Full Text] [Related]
15. Efficient utilization of hydrolysates from steam-exploded gardening residues for lactic acid production by optimization of enzyme addition and pH control. Cubas-Cano E; González-Fernández C; Ballesteros I; Tomás-Pejó E Waste Manag; 2020 Apr; 107():235-243. PubMed ID: 32325410 [TBL] [Abstract][Full Text] [Related]
16. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings. Salgado JM; Rodríguez N; Cortés S; Domínguez JM N Biotechnol; 2012 Feb; 29(3):421-7. PubMed ID: 21807126 [TBL] [Abstract][Full Text] [Related]
17. Minerals and organic nitrogen present in grape marc hydrolyzates enhance xylose consumption by Lactobacillus pentosus. Rivera OM; Torrado AM; Moldes AB; Domínguez JM Appl Biochem Biotechnol; 2009 Feb; 152(2):262-74. PubMed ID: 18581267 [TBL] [Abstract][Full Text] [Related]
18. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp]. Fang XN; Huang W; Xia LM Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126 [TBL] [Abstract][Full Text] [Related]
19. Wheat bran biorefinery--an insight into the process chain for the production of lactic acid. Tirpanalan Ö; Reisinger M; Smerilli M; Huber F; Neureiter M; Kneifel W; Novalin S Bioresour Technol; 2015 Mar; 180():242-9. PubMed ID: 25616238 [TBL] [Abstract][Full Text] [Related]
20. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Tanaka T; Hoshina M; Tanabe S; Sakai K; Ohtsubo S; Taniguchi M Bioresour Technol; 2006 Jan; 97(2):211-7. PubMed ID: 16171677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]