These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1729979)

  • 21. Low anterior counterweights to improve static rear stability of occupied wheelchairs.
    Loane TD; Kirby RL
    Arch Phys Med Rehabil; 1986 Apr; 67(4):263-6. PubMed ID: 3964063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension.
    Cooper RA; Wolf E; Fitzgerald SG; Boninger ML; Ulerich R; Ammer WA
    Arch Phys Med Rehabil; 2003 Jan; 84(1):96-102. PubMed ID: 12589628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces.
    Chan FHN; Eshraghi M; Alhazmi MA; Sawatzky BJ
    Assist Technol; 2018; 30(4):176-182. PubMed ID: 28590160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wheelchair stability and maneuverability: effect of varying the horizontal and vertical position of a rear-antitip device.
    Kirby RL; Thoren FA; Ashton BD; Ackroyd-Stolarz SA
    Arch Phys Med Rehabil; 1994 May; 75(5):525-34. PubMed ID: 8185444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development, reliability, and piloting of a wheelchair caster failure inspection tool (C-FIT).
    Mhatre AA; Lachell S; Pearlman JL
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):195-204. PubMed ID: 30729825
    [No Abstract]   [Full Text] [Related]  

  • 26. Validation of a software-based stability assessment system for wheelchairs and their occupants.
    Caldicott SJ; Shapcott N
    J Med Eng Technol; 2008; 32(6):440-7. PubMed ID: 18608789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Static rear stability of conventional and lightweight variable-axle-position wheelchairs.
    Loane TD; Kirby RL
    Arch Phys Med Rehabil; 1985 Mar; 66(3):174-6. PubMed ID: 3977572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical effects of rear-wheel camber on wheelchairs.
    Trudel G; Kirby RL; Bell AC
    Assist Technol; 1995; 7(2):79-86. PubMed ID: 10159861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Product development: using a 3D computer model to optimize the stability of the Rocket powered wheelchair.
    Pinkney S; Fernie G
    Assist Technol; 2001; 13(1):46-58. PubMed ID: 12212436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wheelchair prescription: an analysis of factors that affect mobility and performance.
    Brubaker CE
    J Rehabil Res Dev; 1986 Oct; 23(4):19-26. PubMed ID: 3820118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wheelchair caster shimmy II: damping.
    Kauzlarich JJ; Bruning TE; Thacker JG
    J Rehabil Res Dev; 2000; 37(3):305-13. PubMed ID: 10917262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of titanium ultralight manual wheelchairs using ANSI/ RESNA standards.
    Liu HY; Cooper RA; Pearlman J; Cooper R; Connor S
    J Rehabil Res Dev; 2008; 45(9):1251-67. PubMed ID: 19319751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manual wheelchair-handling skills by caregivers using new and conventional rear anti-tip devices: a randomized controlled trial.
    Kirby RL; Walker R; Smith C; Best K; Macleod DA; Thompson K
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1680-4. PubMed ID: 19801056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seat height in handrim wheelchair propulsion.
    van der Woude LH; Veeger DJ; Rozendal RH; Sargeant TJ
    J Rehabil Res Dev; 1989; 26(4):31-50. PubMed ID: 2600867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electronic device to measure drive and recovery phases during wheelchair propulsion: a technical note.
    Wang YT; Beale D; Moeizadeh M
    J Rehabil Res Dev; 1996 Jul; 33(3):305-10. PubMed ID: 8823677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing performance of manual wheelchair skills using new and conventional rear anti-tip devices: randomized controlled trial.
    Kirby RL; Corkum CG; Smith C; Rushton P; MacLeod DA; Webber A
    Arch Phys Med Rehabil; 2008 Mar; 89(3):480-5. PubMed ID: 18295626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of wheelchair back support crashworthiness: combination wheelchair back support surfaces and attachment hardware.
    Ha D; Bertocci G; Deemer E; van Roosmalen L; Karg P
    J Rehabil Res Dev; 2000; 37(5):555-63. PubMed ID: 11322154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of pushrim-activated power-assisted wheelchairs using ANSI/RESNA standards.
    Karmarkar A; Cooper RA; Liu HY; Connor S; Puhlman J
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1191-8. PubMed ID: 18503819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Displacement between the seating surface and hybrid test dummy during transitions with a variable configuration wheelchair: a technical note.
    Cooper RA; Dvorznak MJ; Rentschler AJ; Boninger ML
    J Rehabil Res Dev; 2000; 37(3):297-303. PubMed ID: 10917261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.