These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 17300145)
1. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize. Fantozzi A; Ermolli M; Marini M; Scotti D; Balla B; Querci M; Langrell SR; Van den Eede G J Agric Food Chem; 2007 Feb; 55(4):1071-6. PubMed ID: 17300145 [TBL] [Abstract][Full Text] [Related]
2. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification. Ermolli M; Prospero A; Balla B; Querci M; Mazzeo A; Van Den Eede G Food Addit Contam; 2006 Sep; 23(9):876-82. PubMed ID: 16901856 [TBL] [Abstract][Full Text] [Related]
3. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. Zhu X; Chen L; Shen P; Jia J; Zhang D; Yang L J Agric Food Chem; 2011 Mar; 59(6):2184-9. PubMed ID: 21329353 [TBL] [Abstract][Full Text] [Related]
4. Fate of the Cry1Ab protein from Bt-maize MON810 silage in biogas production facilities. Rauschen S; Schuphan I J Agric Food Chem; 2006 Feb; 54(3):879-83. PubMed ID: 16448198 [TBL] [Abstract][Full Text] [Related]
5. Degradation of Cry1Ab protein from genetically modified maize in the bovine gastrointestinal tract. Lutz B; Wiedemann S; Einspanier R; Mayer J; Albrecht C J Agric Food Chem; 2005 Mar; 53(5):1453-6. PubMed ID: 15740023 [TBL] [Abstract][Full Text] [Related]
6. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Gao H; Wen L; Wu Y; Fu Z; Wu G Biosens Bioelectron; 2017 Nov; 97():122-127. PubMed ID: 28582707 [TBL] [Abstract][Full Text] [Related]
7. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence. Yang L; Xu S; Pan A; Yin C; Zhang K; Wang Z; Zhou Z; Zhang D J Agric Food Chem; 2005 Nov; 53(24):9312-8. PubMed ID: 16302741 [TBL] [Abstract][Full Text] [Related]
8. Fate of Cry1Ab protein in agricultural systems under slurry management of cows fed genetically modified maize (Zea mays L.) MON810: a quantitative assessment. Gruber H; Paul V; Guertler P; Spiekers H; Tichopad A; Meyer HH; Muller M J Agric Food Chem; 2011 Jul; 59(13):7135-44. PubMed ID: 21604675 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a sensitive enzyme immunoassay for surveillance of Cry1Ab toxin in bovine blood plasma of cows fed Bt-maize (MON810). Paul V; Steinke K; Meyer HH Anal Chim Acta; 2008 Jan; 607(1):106-13. PubMed ID: 18155416 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of Bt11 and Bt176 genetically modified maize in food sold commercially in Brazil from 2005 to 2007. Dinon AZ; Bosco KT; Arisi AC J Sci Food Agric; 2010 Jul; 90(9):1566-9. PubMed ID: 20549814 [TBL] [Abstract][Full Text] [Related]
11. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Baumgarte S; Tebbe CC Mol Ecol; 2005 Jul; 14(8):2539-51. PubMed ID: 15969733 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize. Roda A; Mirasoli M; Guardigli M; Michelini E; Simoni P; Magliulo M Anal Bioanal Chem; 2006 Mar; 384(6):1269-75. PubMed ID: 16491341 [TBL] [Abstract][Full Text] [Related]
13. A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. Manetti C; Bianchetti C; Casciani L; Castro C; Di Cocco ME; Miccheli A; Motto M; Conti F J Exp Bot; 2006; 57(11):2613-25. PubMed ID: 16831843 [TBL] [Abstract][Full Text] [Related]
14. NMR metabolic profiling of transgenic maize with the Cry1Ab gene. Piccioni F; Capitani D; Zolla L; Mannina L J Agric Food Chem; 2009 Jul; 57(14):6041-9. PubMed ID: 19545151 [TBL] [Abstract][Full Text] [Related]
15. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. Yang L; Guo J; Pan A; Zhang H; Zhang K; Wang Z; Zhang D J Agric Food Chem; 2007 Jan; 55(1):15-24. PubMed ID: 17199308 [TBL] [Abstract][Full Text] [Related]
16. Validity assessment of the detection method of maize event Bt10 through investigation of its molecular structure. Milcamps A; Rabe S; Cade R; De Framond AJ; Henriksson P; Kramer V; Lisboa D; Pastor-Benito S; Willits MG; Lawrence D; Van den Eede G J Agric Food Chem; 2009 Apr; 57(8):3156-63. PubMed ID: 19368351 [TBL] [Abstract][Full Text] [Related]
17. Quantification of Cry1Ab in genetically modified maize leaves by liquid chromatography multiple reaction monitoring tandem mass spectrometry using 18O stable isotope dilution. Zhang Y; Lai C; Su R; Zhang M; Xiong Y; Qing H; Deng Y Analyst; 2012 Jun; 137(11):2699-705. PubMed ID: 22543512 [TBL] [Abstract][Full Text] [Related]
18. Characterization of protein fractions from Bt-transgenic and non-transgenic maize varieties using perfusion and monolithic RP-HPLC. Maize differentiation by multivariate analysis. Rodríguez-Nogales JM; Cifuentes A; García MC; Marina ML J Agric Food Chem; 2007 May; 55(10):3835-42. PubMed ID: 17447787 [TBL] [Abstract][Full Text] [Related]
19. Detection of Cry1Ab toxin in the leaves of MON 810 transgenic maize. Székács A; Lauber E; Takács E; Darvas B Anal Bioanal Chem; 2010 Mar; 396(6):2203-11. PubMed ID: 20091160 [TBL] [Abstract][Full Text] [Related]
20. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Wang H; Ye Q; Wang W; Wu L; Wu W Environ Pollut; 2006 Oct; 143(3):449-55. PubMed ID: 16459002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]